APPENDIX A Waimea Mediation Agreement # MEDIATION AGREEMENT FOR THE WAIMEA WATERSHED AREA This Mediation Agreement is entered into this \(\lambda \) day of \(\textit{April} \), 2017, by and between the parties hereto to present reasonable interim instream flow standards to the Commission on Water Resource Management ("Commission") for its consideration in an effort to resolve disputes arising out of the diversion of water from the Waimea River and its tributaries, and to avoid protracted and time and resource consuming litigation. #### WITNESSETH: WHEREAS, on July 24, 2013, Pōʻai Wai Ola/West Kauaʻi Watershed Alliance filed a Combined Petition to Amend the Interim Instream Flow Standards for Waimea River and Its Headwaters and Tributaries, and Complaint and Petition for Declaratory Order Against Waste, which concerns the Waimea Watershed in Waimea, Island of Kauaʻi, Hawaiʻi; WHEREAS, on May 27, 2014, the Commission engaged Element Environmental, LLC to develop an inventory of the stream system, water uses, and water users of the Waimea River and its headwaters and tributaries, and to conduct an appropriate investigation of the water systems and the water resources in the area; WHEREAS, during 2015, the Commission sought and received information on water uses from the agricultural interests and the Department of Hawaiian Home Lands ("DHHL"); WHEREAS, in October, 2015, the Commissioners, Commission staff, and interested parties familiarized themselves with the stream system and non-stream uses by visiting the area over two days; WHEREAS, on November 17, 2015, DHHL filed with the Commission a Petition for Reservation of Surface Water of 33.145 MGD; WHEREAS, also during 2015, in light of the fact that similar petitions have historically taken decades to resolve, the Commission staff approached various parties having an interest in this area and its waters to consider participating in a mediation of the issues involved; WHEREAS, in December, 2015, the Commission approved engaging a mediator to assist in reaching an agreement between the parties that would be acceptable to the Commission to resolve the issues in the Waimea watershed; WHEREAS, at its February 16, 2016 duly-noticed meeting, the Commission approved the terms of reference for the mediation, and subsequently, the services of the Collaborative Leaders Network were engaged to conduct the mediation, led by its President, Robert Alm; and WHEREAS, during November, 2016, a set of controlled releases of water was undertaken by the Commission staff and the parties to assist in the resolution of the issues in this matter. NOW, THEREFORE, the parties have reached the following points of agreement for consideration and approval by the Commission to guide the Commission staff and these parties in their respective and cooperative handling of the area's water resources in the coming years, and to amend the current interim instream flow standards of the Waimea River, its headwaters and its tributaries: - 1. The Waimea Watershed Agreement which is attached hereto as Exhibit A. - 2. In light of this agreement, it is also agreed that: - A. Pō'ai Wai Ola/West Kaua'i Watershed Alliance's Combined Petition to Amend the Interim Stream Flow Standards for Waimea River and Its. Headwaters and Tributaries, and Complaint and Petition for Declaratory Order Against Waste (filed July 24, 2013) will be considered to be resolved. - B. DHHL will, within thirty days (30) of the approval of this agreement, submit a modified petition to provide for a water reservation of 6.903 MGD from the Kokee Streams, and request that the Commission consider and act on the modified petition within sixty (60) days of its filing. DHHL maintains the right to file, at later dates, additional water reservations for the Waimea Watershed. - 3. The terms of this Agreement are submitted to the Commission for consideration and approval. By executing this Agreement, each party represents to the Commission its acknowledgement that, based upon the information obtained to date on stream flows, ditch flows, beneficial in-stream uses and non-stream uses, each party has weighed the importance of the present and potential uses of water, including the economic impact of restricting such uses. - 4. The parties recognize and respect the intent of the Water Code, Chapter 174C, H.R.S., and the Commission, including to obtain maximum beneficial use of the waters of the State for purposes such as domestic uses, aquaculture uses, irrigation and other agricultural uses, power development, and commercial and industrial uses, as long as there is adequate provision for the protection of traditional and customary Hawaiian rights, the protection and procreation of fish and wildlife, the maintenance of proper ecological balance and scenic beauty, and the preservation and enhancement of waters of the State for municipal uses, public recreation, public water supply, agriculture, and navigation. - 5. Mediation communications and confidential information protected by the Commission's mediation rules, H.A.R. § 13-167-90, and the Uniform Mediation Act, H.R.S. ch. 658H, shall remain confidential regardless of the Commission's decision on this Agreement. - 6. This Agreement shall be effective, and interim instream flows shall be established, if at all, upon approval of its terms by the Commission. | PO'AI WAI OLA/
WEST KAUA'I WATERSHE | D ALLIANCE | | | VAII, AGRIBUSIN
T CORPORATIO | | |---|------------|-----|---------|--|---------------------------------------| | By: Hill All | Wylas. | By: | * 2,- | na na ann an ann an ann an ann ann an an | ,
 | | STATE OF HAWAII, DEPT.
HAWAIIAN HOME LANDS | OF | | A AGRIC | CULTURE | • , | | | | | | | | | By: | | By: | | | | | KAUA'I ISLAND UTILITY
COOPERATIVE | | | • | | | | By: | | | *, | | , , , , , , , , , , , , , , , , , , , | | PO'AI WAI OLA/WEST KAUA'I
WATERSHED ALLIANCE | STATE OF HAWAI'I, AGRIBUSINESS DEVELOPMENT CORPORATION | |--|--| | By:Its | By: Its | | STATE OF HAWAI'I, DEPT OF
HAWAIIAN HOME LANDS | KEKAHA AGRICULTURE ASSOCIATION | | By: | By:Its | | KAUA'I ISLAND UTILITY
COOPERATIVE | | | By: | | | PŌʻAI WAI OLA/WEST KAUAʻI
WATERSHED ALLIANCE | STATE OF HAWAI'I, AGRIBUSINESS
DEVELOPMENT CORPORATION | |--|---| | By:Its | By:
Its | | STATE OF HAWAI'I, DEPT OF
HAWAIIAN HOME LANDS | KEKAHA AGRICULTURE ASSOCIATION | | By: Mesad: KAUA'I ISLAND UTILITY COOPERATIVE | By:Its | | By:Its | | | PŌʻAI WAI OLA/WEST KAUAʻI
WATERSHED ALLIANCE | STATE OF HAWAI'I, AGRIBUSINESS
DEVELOPMENT CORPORATION | |--|---| | By: | lts | | STATE OF HAWAI'I, DEPT OF
HAWAIIAN HOME LANDS | KEKAHA AGRICULTURE ASSOCIATION | | By: | By: Ashew My Man | | KAUAʻI ISLAND UTILITY
COOPERATIVE | | | By: | | | PŌʻAI WAI OLA/WEŞT KAUAʻI
WATERSHED ALLIANCE | STATE OF HAWAI'I, AGRIBUSINESS DEVELOPMENT CORPORATION | |--|--| | By: | By:
Its | | STATE OF HAWAI'I, DEPT OF
HAWAIIAN HOME LANDS | KEKAHA AGRICULTURE ASSOCIATION | | By: | By:
Its | | KAUA'I ISLAND UTILITY
COOPERATIVE | | | By: David Brosell | | # WAIMEA WATERSHED AGREEMENT - A. Statement of Guiding Principles - B. Modification of Diversions - C. Permits and Approval - D. IIFS Numbers - E. Monitoring Stations - F. Operating Protocols - G. Infrastructure Agreements # A. STATEMENT OF GUIDING PRINCIPLES The following guiding principles underlie this agreement and all phases of its execution: - 1. All streams will be allowed to run from the mountain to the sea and no diversion will ever be a total diversion again. - 2. Any diversion of water from a stream must be justified with no more water taken than is needed for other beneficial uses, and even then, the health of the stream must be preserved at all times. All waters not needed at any given time belong in the stream and the IIFS numbers are the minimum amounts to be provided. - 3. Agriculture and renewable energy are beneficial uses of water diverted from these streams. - 4. DHHL will, within thirty days (30) of the approval of this agreement, submit a modified petition to provide for a water reservation of 6.903 MGD from the Kokee Streams, and request that the Commission consider and act on the modified petition within sixty (60) days of its filing. DHHL maintains the right to file, at later dates, additional water reservations for the Waimea Watershed. The parties acknowledge DHHL's rights to water as set forth in the Hawaiian Homes Commission Act, the Hawaii Constitution, and Haw. Rev. Stat. chapter 174C, the State Water Code. - 5. The ditch systems owned by the State of Hawaii's Agribusiness Development Corporation (ADC), and currently operated by the Kekaha Agriculture Association (KAA), will continue to be maintained to allow for both present and future uses. - 6. Kaua'i Island Utility Cooperative (KIUC) will be allowed to complete due diligence on a set of energy projects supported by the Kokee Ditch System, and, if the energy projects are built, will receive from the Kokee ditch system a rolling average of 11 mgd to support both (1) the Puu Opae project and (2) DHHL's water needs under any water reservation the Commission may grant to DHHL (see A.4, supra) that are to be served by the project infrastructure, with the understanding that the KIUC project is intended to serve both energy and agricultural uses which will enable the Commission to review the water needs of both systems with the goal of reducing the diversion of water into the Kekaha Ditch system. This
means that KIUC will be able to take an average of 11 mgd within each year and over the course of the life of the project, assuming the IIFSs are met first. The term "rolling average" as used in this agreement means an average to account for intra and inter annual fluctuation. - 7. If KIUC does build the energy projects, it will assume substantial responsibility for much of the Kokee ditch system and related facilities as specified in this agreement. ## B. MODIFICATIONS OF THE DIVERSIONS Throughout this Agreement, all references to days are to calendar days. All plans for the modification of any diversion shall be subject to review and approval by the Commission or its staff prior to any modification taking place. When plans are submitted to the Commission, a copy will be provided to each other party to this agreement. KIUC will modify all diversions in the Kokee Ditch necessary to ensure the stream flow provided for in this agreement, as follows: KIUC will file with the Commission and any other pertinent regulatory agency its modification plans within one hundred thirty-five (135) days of the approval of this agreement by the Commission. Work on the modifications will begin within forty-five (45) days of approval of the modification plans or any other approval required by the modification proposal, whichever comes last. If KIUC does not receive (1) the understandings from ADC set forth in Section C by April 30, 2017, and/or (2) the understandings from DHHL set forth in Section C within ninety (90) days of the Commission's approval of this agreement, KIUC shall have the option to withdraw from its responsibilities and obligations under this agreement. If KIUC opts to withdraw, it will notify the Commission and all the parties to this agreement. If KIUC does not exercise its option to withdraw within one-hundred (100) days after the approval of this agreement by the Commission, KIUC shall proceed with the modification plans in accordance with the paragraph immediately above. ADC (either itself or through its licensee KAA) will modify all other diversions relating to the Kekaha Ditch system and specifically those associated with the Koaie and Waiahulu streams and the Waimea diversion necessary to ensure the stream flow provided for in this agreement, as follows: ADC (either itself or through its licensee KAA) will file with the Commission and any other pertinent regulatory agency its modification plans within forty-five (45) days of the approval of this agreement by the Commission. Work on the modifications will begin within forty-five (45) days of approval of the modification plans or any other approval required by the modification proposal, whichever comes last. All modifications will be done in a manner that provides for water flowing over it, provides for a wetted path upstream and downstream such that adult forms can migrate upstream and larval forms can migrate downstream, and minimizes entrainment of native species to the maximum extent practicable. If any modification requires an Environmental Assessment, an Environmental Impact Statement or other permitting or approvals, the filing of those must occur within ninety (90) days of notification by the Commission or other pertinent regulatory agency of the need for such actions. If KIUC exercises its option to withdraw within one-hundred (100) days after the approval of this agreement by the Commission, ADC (either itself or through its licensee KAA) will be responsible for the modifications to the Kokee Ditch diversions necessary to comply with this agreement, as follows: ADC (either itself or through its licensee KAA) will file with the Commission and any other pertinent regulatory agency its modification plans for the Kokee Ditch diversions within forty-five (45) days of KIUC's notice of withdrawal. Work on the modifications will begin within forty-five (45) days of approval of the modification plans or any other approval required by the modification proposal, whichever comes last. # C. PERMITS AND APPROVALS In order to develop its renewable energy project(s), KIUC will need to obtain a number of permits and approvals from various governmental agencies, and compliance with the requirements of HRS Chapter 343 will be necessary prior to agency action on those permits and approvals. Nothing in this agreement obliges any government agency to grant any of those permits or approvals. Each permitting and approving agency needs to exercise its discretion without regard to this agreement. None of the signatory governmental agencies to this agreement issue the permits and approvals that KIUC will need for this project other than those provided for in this agreement. In order to allow KIUC to move forward with its project(s), KIUC needs to know that it will have the ability to perform its due diligence (engineering, biological, and archaeological) on the project; that infrastructure for the project(s) will be available in the event that KIUC ultimately receives the permits and approvals necessary for its project(s); and the financial terms for access to and use of that infrastructure in the event that KIUC ultimately receives the permits and approvals necessary for its project(s). If KIUC does not have in place (1) the understandings from ADC set forth below by April 30, 2017, and/or (2) the understandings from DHHL set forth below within ninety (90) days of the Commission's approval of this agreement, KIUC reserves the right to withdraw from its responsibilities and obligations under this agreement. If KIUC chooses to do so, it will notify the Commission, and all the parties to this agreement, that it is doing so and will then be relieved of all obligations under this agreement, subject to KIUC's duty to proceed with the diversion modification plans in accordance with Section B if KIUC does not exercise its option to withdraw within one-hundred (100) days after the approval of this agreement by the Commission. It is understood that, in order to facilitate this agreement, Pō'ai Wai Ola/West Kaua'i Watershed Alliance will forbear from contesting or challenging ADC's or DHHL's decisions with respect to the understandings described in this section. #### THE UNDERSTANDINGS ARE AS FOLLOWS: #### From ADC to KIUC: - 1. A license, with an option for a lease, for the following infrastructure: - a. The diversions on the Kokee Ditch at Waiakoali, Kawaikoi, Kauaikinana and Kokee and all the ephemeral diversions on the Kokee ditch system. - b. The Kokee Ditch from the diversions to the Puu Moe Divide. - c. The Mana Reservoir. - d. The land needed for construction of the Mana powerhouse located adjacent to the Mana Reservoir. The license or lease shall provide for the water for KIUC under this agreement and approved by the Commission subject to approval of a water lease application by KIUC to be filed with the Board of Land and Natural Resources pursuant to Haw. Rev. Stat. § 171-58. The financial terms of the license/leases shall be binding on KIUC and ADC if the required permits and approval are issued and the project is developed. #### 2. Easements as follows: - a. The Kokee Ditch access roads for the purposes of ditch access and maintenance. - b. The Mana Reservoir access road for the purpose of access to the Mana Reservoir, powerhouse and substation. - c. A short-term easement for the construction of a pressurized pipeline segment on the Mana Plain with a long-term easement for maintenance of the pipeline. - d. A short-term easement for the construction of the Puu Opae project powerhouse and substation adjacent to the Mana reservoir. - e. A long-term easement for the Puu Opae project electrical transmission lines and pressurized pipeline. ## From DHHL to KIUC: - 1. A right of entry ("ROE") to be issued to conduct all engineering, biological and archaeological studies necessary to support regulatory requirements for the project. - 2. Within ninety days (90) of the approval of this agreement by the Commission, the DHHL will notify KIUC as to whether it will issue a 65-year lease for the land and infrastructure (Puu Opae Reservoir) to KIUC subject to HRS § 171-95.3, the Hawaiian Homes Commission Act, as amended, and Hawaiian Homes Commission policies, if KIUC complies with HRS Chapter 343 and receives the necessary approvals and permits for the construction of the Puu Opae project. Once approved, and subject to the above, the financial terms and conditions will be binding on KIUC and DHHL. - 3. If the lease to KIUC described above is issued by the DHHL, it will - a. include the provision of a rolling average of 11 mgd of water subject to approval of a water lease application by KIUC to be filed with the Board of Land and Natural Resources pursuant to Haw. Rev. Stat. § 171-58 and subject to meeting the water needs of DHHL as set forth in any water reservation the Commission may grant. - b. grant a short-term easement for the pressurized pipeline and a buried transmission line construction and the rehabilitation of the Puu Opae Reservoir. - c. grant a long-term easement for the maintenance of the pipeline, the buried transmission line and the access roads. - d. will include the Puu Opae Reservoir and land adjacent to the reservoir (less than three acres) for the project powerhouse. #### D. IIFS NUMBERS Based on the submissions by the parties and the analysis by the Commission staff, the following IIFS numbers are agreed to in two phases. Phase One will go into effect upon the approval of this agreement by the Commission. As part of Phase One, the parties agree to immediately take steps to restoré flows to the maximum extent possible (e.g., by removing a board or lifting a gate) while working on the structural modifications pursuant to the deadlines set forth in Section B. Phase Two goes into effect if and when the KIUC energy project goes into service. #### PHASE ONE: #### Kokee Irrigation System - 1. The existing natural flow in the Kokee Stream is permitted to flow past the
Kokee Ditch. - 2. For the Kauaikinana, Kawaikoi, and Waiakoali streams, the IIFS below each diversion is the following: | Stream | IIFS | |-------------|--------------| | Kokee | natural flow | | Kauaikinana | 0.7 mgd | | Kawaikoi | 4.9 mgd | | Waiakoali | 1.4 mgd | #### Kekaha Irrigation System 1. The IIFS for the Koaie Stream below the Koaie Diversion will be 2 mgd. - 2. The IIFS for the Waimea Stream below the Waiahulu Diversion will be 8 mgd. - 3. The IIFS for the Waimea Stream at USGS 16031000 will be 25 mgd with a minimum flow at all times through the Kekaha Ditch of 6 mgd measured at the Hukipo Flume. #### PHASE TWO: # Kokee Irrigation System - 1. The existing natural flow in the Kokee Stream is permitted to flow past the Kokee Ditch except for flows greater than 1.2 mgd, in which the lIFS is 1.2 mgd. - 2. For the Kauaikinana, Kawaikoi, and Waiakoali streams, for flows less than or equal to the established values listed in the table below, the IIFS below each diversion is two-thirds (66.6°/o) of the flow in the stream; for flows greater than the established values listed below, the IIFS below each diversion is the value given. | Stream | Established value | IIFS | IIFS if stream flow
is below or equal
to established
value | IIFS if
streamflow is
above the
established value | |-------------|-------------------|------------------------|---|--| | Kokee | 0.2 | Natural flow up to 1.2 | n/a | n/a | | Kauaikinana | 1.2 | | 2/3 of stream flow | 0.6 | | Kawaikoi | 6.4 | | 2/3 of stream flow | 4.0 | | Waiakoali | 1.3 | | 2/3 of stream flow | 0.8 | All water flows above these numbers may be used by KIUC in support of its project. #### Kekaha Irrigation System - 1. The IIFS for Koaie Stream below the Koaie Diversion will be 2 mgd. - 2. The IIFS for Waimea Stream below the Waiahulu Diversion will be 8 mgd. - 3. The IIFS for the Waimea Stream at USGS 16031000 will be 25 mgd with a minimum flow at all times through the Kekaha Ditch of 6 mgd measured at the Hukipo Flume subject to Commission review of its ongoing need based on the water coming to the plain through the KIUC project as provided in paragraph 10 of the Operating Protocols section, infra. If Phase Two goes into operation, the Commission will examine the amounts being diverted at Koaie and at Waiahulu with goal of increasing the total IIFS numbers for these two streams. ### E. MONITORING STATIONS Monitoring stations will be put in place to measure the amount of water coming into the ditches and the amount of water going into the streams below the diversions on a continuous real-time basis. KIUC, assuming that it receives the understandings called for in the Permits and Approvals section of this agreement, will install and maintain monitoring equipment at the existing flow gauging location immediately above the Puu Lua Reservoir and for the following streams: Waiakoali Kawaikoi Kauaikinana Kokee ADC (either itself or through its licensee KAA), if the Commission approves this agreement, will install and maintain monitoring equipment for the following streams: Waiahulu Koaie Waimea at the Mauka hydroelectric plant The information gathered by these stations shall be made available to all parties at the same time. The Commission and the U.S. Geological Survey may install and maintain its own monitoring equipment along the streams and/or ditches in the watershed. If the KIUC project does not receive the understandings called for in the Permits and Approvals section, the monitoring equipment will be installed and maintained by ADC (either itself or through its licensee KAA). If the KIUC project ultimately does not proceed, ADC (either itself or through its licensee KAA) will assume responsibility for the monitoring equipment. ### F. OPERATING PROTOCOLS The goal of the Waimea water systems is to preserve the life of the streams and their aquatic resources while allowing for agricultural and renewable energy uses to co-exist with the streams. In the operation of these systems the intent is to have instantaneous daily decisions made on where the water in any given stream would go between the streams and the ditches: - 1. Flow in the stream has the highest priority and water should flow at the highest possible level with diversions only as needed for other uses with the IIFS numbers being the minimum amounts to be provided. - 2. Stated otherwise, when water is not presently needed for other uses such as expanded agricultural uses or future energy projects, the water must remain in the streams. - 3. Current agricultural uses by ADC (and its licensees) will continue to be provided with the water needed for their operations. Each month, ADC (either itself or through its licensee KAA) will report monthly water usage volumes for agricultural and non-agricultural uses, monthly total cultivated acres, and a list of crop types. Each year, ADC (by itself or through its licensee KAA) will report annual cultivated acres by crop type. - 4. Water for the kalo farmers on the Menehune Ditch will continue to be provided by one or both ditch systems. - 5. Water for agricultural uses by ADC (and its licensees) and water for uses by the DHHL (and its lessees and licensees) in accordance with DHHL's rights to water as set forth in the Hawaiian Homes Commission Act, the Hawaii Constitution, and Haw. Rev. Stat. chapter 174C, the State Water Code will be provided so long as the amounts involved are reasonable in their consumption levels and in relation to the water provided to the streams. In that regard, the need to plant less water intensive crops and the importance of using efficient water delivery methods will be taken into account as well as the availability of R-1 water and well water. - 6. If one or more hydro projects are developed by KIUC on the Kokee Ditch System, KIUC will receive from the Kokee ditch a rolling average of 11 mgd to support both (1) the Puu Opae project and (2) DHHL's water needs under any water reservation the Commission may grant to DHHL (see A.4, supra) that are to be served by the project infrastructure. This means that KIUC will be able to take an average of 11 mgd within each year and over the course of the life of the project, assuming the IIFSs are met first. In its project, KIUC will leave enough water in the ditch past the Puu Moe Divide to meet the needs of users of ditch water below that point. - 7. Controlled releases and biological studies will be part of any protocol to help determine the best ongoing uses of water. - 8. To the extent not otherwise provided by the above uses, the Commission may consider a request to allow a minimum flow of water to maintain the ditch systems to the extent necessary to ensure their ongoing structural integrity. - 9. The Waiawa power plant will be allowed to operate in its current manner for no more than three years from the approval of this agreement after which it must be either decommissioned or repowered to operate using such waters as are reasonably related to agricultural (as opposed to energy) uses. Specifically, after three years, no more than 10 mgd can be diverted in the Kekaha Ditch at Hukipo Flume unless reasonable agricultural uses require more water and the Commission finds that such additional waters can be provided consistent with the IIFS numbers it has set. If Phase Two goes into operation, the Commission will reexamine the amounts diverted to reduce them to take into account the energy and agricultural uses served by the KIUC project. The execution of these protocols will be the responsibility of ADC (either itself or through its licensee KAA), and of KIUC. KIUC, if it receives the understandings provided for in the Permits and Approvals section above, may contract with other entities to carry out its responsibilities under this agreement. If there is any dispute in the operation of the protocols, it shall be brought to the Commission for resolution. # G. INFRASTRUCTURE AGREEMENTS #### PHASE ONE: CURRENT OPERATIONS Unless and until the energy projects proposed by KIUC receive all required approvals and Phase Two is implemented, the current system will be maintained by the ADC, and its licensee KAA, and the State agencies involved in the case of the impacted dams and reservoirs, subject to the provisions of this agreement, including those pertaining to the modification of diversions and the installation of monitoring equipment. # PHASE TWO: THE ENERGY PROJECTS If KIUC receives the understandings required in the Permits and Approvals section; finds that the project is feasible to undertake and finance; and gets the approval of the Public Utilities Commission for the energy projects, KIUC may build and/or rehabilitate one or more energy projects in the Waimea Watershed area. If KIUC proceeds, it will assume significant responsibility for the infrastructure on the systems involved. This section sets forth the infrastructure for which KIUC (and any firms it employs) will be responsible: #### 1. The Ditches KIUC will operate, upgrade, alter or repair as appropriate, and maintain: a. The Kokee Ditch including the ditch, flumes and tunnels, beginning at the Waiakoali Intake to the Puu Moe Divide, including the Kauhao sluice gate and the weir gate at the Divide; and any pressurized piping KIUC installs involving the ditch and the reservoirs named below including between the Divide and the Puu Opae Reservoir. (KIUC will not be responsible for the ditch from the Divide to the Kitano Reservoir.) #### 2. Diversions KIUC will operate, repair and maintain the following diversions: - a. Waiakoali - b. Kawaikoi - c. Kauaikinana - d. Kokee - e. All active ephemeral stream diversions. Kumuela 1-5, Nawaiamaka and Halemanu on the Kokee Ditch. ADC (either itself or through its licensee KAA) will operate, repair and maintain the following diversions: - f. Waiahulu - g. Koaie - h.
Waimea #### 3. Roadways KIUC will repair and maintain the roadways which pertain to the operations of the Kokee Ditch. a. The jeep roadway extending from the Kokee Highway to the Puu Lua Reservoir; - b. The jeep road extending from the Kokee Highway to the Puu Opae Reservoir; - c. The jeep road extending from the DHHL/DLNR gate on the Mana Plain to the Puu Opae Reservoir; - d. Ditch maintenance roads along the Kokee Ditch; - e. All other jeep roads and ditch trails necessary to access, maintain and operate the ditch systems that are under KIUC's control. The assumption of responsibility for the roadways by KIUC does not change existing access rights or in any way alter their status as public or private roads. In carrying out the operation, upgrade, repair and maintenance to the ditches, diversions and roadways as described above in this section, KIUC and ADC (and any other firm employed by the same) shall not interfere with the quiet enjoyment of the DHHL lessees and licensees. # 4. <u>Control Equipment</u> KIUC will operate the Puu Opae Energy Project(s), the streamflow gauging equipment on the Kokee Ditch and pertinent streams, the Puu Lua Reservoir, the Puu Opae Reservoir and the Mana Reservoir. # 5. <u>Hydroelectric Plants</u> KIUC will operate, repair and maintain the hydro plants developed as part of the Puu Opae energy project: #### 6. Dams and Reservoirs KIUC will rehabilitate the following reservoirs pursuant to the State of Hawaii dam safety standards and undertake the operation and maintenance of each through the life of the Puu Opae project. - a. Puu Lua Reservoir - b. Puu OpaeReservoir - c. Mana Reservoir # 7. <u>Pressurized Piping</u> KIUC will construct and maintain the following segments of pressurized pipeline: - a. Between the Puu Moe Divide and the Puu Opae Reservoir; - b. Between the Puu Opae and Mana Reservoirs. ## 8. Pumping Stations ADC will continue to operate and maintain the Kawaiele and Nohili Pumping Stations. # 9. <u>Monitoring Stations</u> KIUC will operate and maintain the equipment discussed in the Monitoring Stations section above. # 10. Agreements to Operate The cost of all of KIUC's undertakings pursuant to this agreement will be negotiated directly between KIUC and the agencies involved. # 11. <u>Infrastructure Covered</u> Any infrastructure not covered by this agreement will be presumed to be handled by whoever is handling it today. This agreement covers only the specific infrastructure discussed in it. # APPENDIX B CWRM Instream Flow Standard Assessment Report # **Instream Flow Standard Assessment Report** # Island of Kauai Hydrologic Unit 2060 **Waimea** August 2016 PR-2016-08 # State of Hawaii Department of Land and Natural Resources Commission on Water Resource Management # **Table of Contents** | 1.0 | Introduction | 1 | |------|---|----| | | neral Overview | | | | rrent Instream Flow Standard | | | | etream Flow Standardserim Instream Flow Standard Process | | | Ins | stream Flow Standard Assessment Report | 3 | | | rface Water Hydrologic Unitsrface Water Definitions | | | 2.0 | Unit Characteristics | | | | ology | | | | ilsinfall | | | | lar Radiation | | | Eva | apotranspiration | 17 | | | nd Usend Cover | | | | ood | | | | ought | | | 3.0 | Hydrology | | | | reams in Hawaii | | | | ound Watereamflow Characteristics | | | Lor | ng-term trends in flow | 36 | | Cli | mate fluctuations and dry season flows | 39 | | 4.0 | Maintenance of Fish and Wildlife Habitat | | | | waii Stream Assessment | | | | sessment of Upper Reachessessment of Lower to Middle Reachessessment of Lower to Middle Reaches | | | 5.0 | Outdoor Recreational Activities | | | 6.0 | Maintenance of Ecosystems | 54 | | 7.0 | Aesthetic Values | 62 | | 8.0 | Navigation | 63 | | 9.0 | Instream Hydropower Generation | 64 | | 10.0 | Maintenance of Water Quality | 65 | | 11.0 | Conveyance of Irrigation and Domestic Water Supplies | 71 | | 12.0 | Protection of Traditional and Customary Hawaiian Rights | 72 | | | ro Production | | | | hpondswaiian Home Lands | | | | | | | 13.0 | Noninstream Uses | 88 | | Water Leaving the Waimea Hydrologic Unit in Ditch Systems | 88 | |---|-----| | Modifications of Ditch Systems and Groundwater Recharge | 103 | | Utilization of Important Agricultural Lands | | | Diverted Water and Non-Instream Power Production | 108 | | Irrigation Needs of the Kekaha Service Area | 110 | | Olokele Ditch System | | | Proposed KIUC West Kauai Energy Project | 113 | | Modeled water for non-instream uses in the Kokee Irrigation System. | | | Bibliography | 117 | | 14.0 Appendix | 126 | # **List of Figures** | Figure 1-1. Information to consider in setting measurable instream flow standards | 2 | |---|----| | Figure 1-2. Simplified representation of the interim instream flow standard and permanent instream flow standard processes. Keys steps of the adopted interim IFS process are depicted in the left column by the boxes drawn with dotted lines | 3 | | Figure 1-3. Topographic map of the Waimea hydrologic unit and streams in southeast Kauai,
Hawaii. (Source: U.S. Geological Survey, 1996; State of Hawaii, Commission on Water
Resource Management, 2015c; State of Hawaii, Division of Aquatic Resources, 2005) | 7 | | Figure 1-4. Elevation range and the location of Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2004e; U.S. Geological Survey, 2001) | 8 | | Figure 1-5. Quickbird satellite imagery of Waimea hydrologic unit. (Source: State of Hawaii, Planning Department, 2004) | 9 | | Figure 1-6. Major and minor roads for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning 2015) | 10 | | Figure 2-1. Generalized geology of Waimea hydrologic unit. (Source: Sherrod et al., 2007) | 14 | | Figure 2-2. Soil classification in Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015m) | 15 | | Figure 2-3. Orographic precipitation in the presence of mountains higher than 6,000 feet | 16 | | Figure 2-4. Mean annual rainfall and elevation contour Waimea hydrologic unit. (Source: Giambelluca et al., 2013) | 18 | | Figure 2-5. Mean annual solar radiation for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015c) | 19 | | Figure 2-6. Mean annual actual evapotranspiration for the Waimea hydrologic unit. (Source: Giambelluca et al., 2014) | 20 | | Figure 2-7. State land use district boundaries in Waimea hydrologic unit (Source: State of Hawaii, Office of Planning, 2015d). | 25 | | Figure 2-8. C-CAP land cover in Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015k) | 26 | | Figure 2-9. Hawaii GAP land cover classes in Waimea hydrologic unit (Source: State of Hawaii, Office of Planning, 2015f). | 27 | | Figure 2-10. FEMA flood zone regions in Waimea hydrologic unit (Source: Federal Emergency Management Agency, 2014) | 28 | | Figure 2-11. Map of wildfire ignition points in southwest Kauai since 1999. (Source: HWMO, 2013) | 29 | | Figure 3-1. Diagram illustrating the ground water system west of Keanae Valley, northeast Maui, Hawaii. Arrows indicate general direction of ground water flow (Source: Gingerich, 1999b) | 31 | | Figure 3-2. Ditches, diversions and gaging stations in the upper Waimea hydrologic unit that feed the Kokee Ditch system (Source: State of Hawaii, Commission on Water Resource Management, 2015a) | 33 | | Figure 3-3. Ditches, diversions and gaging stations in the lower Waimea hydrologic unit that feed the Kekaha and Olokele ditch systems. (Source: State of Hawaii, Office of Planning, 2004c; State of Hawaii, Commission on Water Resource Management, 2015a; 2015e) | | | Figure 3-4. Aquifer system area and well locations (with well numbers) in Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015d; State of Hawaii, Commission on Water Resource Management, 2015f) | 37 | | | | | Figure 3-5. Cumulative departures of monthly mean flow from the mean of the monthly flows, Hawaii. This data is based on complete water years from 1913 through 2002. (Oki, 2004, Figure 4) | 38 | |--|-----| | Figure 4-1. Elevational profile of a terminal-estuary stream on the Big Island of Hawaii (Hakalau Stream). (Source: McRae, 2007, adapted from Nishimoto and Kuamoo, 1991 [with permission]) | 40 | | Figure 4-2. Location of <i>Atyioda bisulcata</i> observations from 1963 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) | 46 | | Figure 4-3. Location of <i>Awaous stamineus</i> observations from 1963, 1994 and 2002 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) | 47 | | Figure 4-4. Location of <i>Stenogobius hawaiiensis</i> observations from 1963, 1994 and 2002 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) | 48 | | Figure 4-5. Location of <i>Sicyopterus stimpsoni</i> observations from 1963, 1994 and 2002 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) | 49 | | Figure 5-1. Public hunting areas for game mammals in Wamea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2002b) | 52 | | Figure 5-2. Recreational and aesthetic points of interest as well as coastal resources for Waimea hydrologic unit. (Source:
State of Hawaii, Office of Planning, 1999, 2002c; 2004a) | 53 | | Figure 6-1. Simplified ecosystem illustrated in a Hawaiian stream. (Source: Ziegler, 2002, illustration by Keith Kruger) | 54 | | Figure 6-2. Reserves and wetlands for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2007b; 2015n) | 59 | | Figure 6-3. Distribution of native and alien plant species, and critical habitat for plant and bird species in the Waimea hydrologic unit. (Source: Scott et al., 1986; State of Hawaii, Office of Planning, 1996; 2004b) | 60 | | Figure 6-4. Density of threatened and endangered plants in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015h) | 61 | | Figure 10-1. Modeled annual sediment export from sub-catchments in the Waimea hydrologic unit. (Source: Kim Falinski, pers. comm.) | 66 | | Figure 10-2. Water quality standards for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015e; 2008). The classifications are general in nature and should be used in conjunction with Hawaii Administrative Rules, Chapter 11-54, Water Quality Standards. | 70 | | Figure 12-1. Traditional ahupuaa boundaries in the vicinity of Waimea hydrologic unit. This hydrologic unit spans two ahupuaa – Waimea and Makaweli. (Source: State of Hawaii, Office of Planning, 2015j) | 73 | | Figure 12-2. Generalized process for determining appurtenant water rights. This process is generalized and may not fully explain all possible situations. It does not apply to Hawaiian Homes Lands. If you are Native Hawaiian you may have other water rights. | 76 | | Figure 13-1. All registered diversions and ditches identified in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2004d; State of Hawaii, Commission on Water Resource Management, 2015g) | 91 | | Figure 13-2. Estimated recharge for six historical periods between 1926 and 2004, central and west Maui, Hawaii. (Source: Engott and Vana, 2007) | 103 | | Figure 13-3. Summary of estimated recharge, in million gallons per day, for various land-use and rainfall conditions in the Lihue Basin, Kauai, Hawaii. (Source: Izuka et al., 2005) | 104 | | Figure 13-4. Agricultural land use for the Waimea hydrologic unit based on the Agricultural Lands of Importance for the State of Hawaii (ALISH) classification systems. (Source: State of Hawaii, Office of Planning, 2015g) | 106 | | Figure 13-5. Designated agricultural land use for the Waimea hydrologic unit based on the Agricultural Land Use Map (ALUM). (Source: State of Hawaii, Office of Planning, 2015h) | 107 | |--|-----| | Figure 13-6. Mean daily energy generated by month from the Waimea (Mauka) and Waiawa hydropower plants on the Kekaha Ditch. (Source: Kekaha Agriculture Association, 2015) | 108 | | Figure 13-7. Box-and-whisker plots of daily energy generation (left) and daily water usage (right) the Waimea (Mauka) and Waiawa hydropower plants on the Kekaha Ditch. (Source: Kekaha Agriculture Association, 2015) | 108 | | Figure 13-8. Area of land between mean sea level (m.s.l.) and 7 feet above m.s.l. in elevation in the Mana Plain, Kauai. (Source: NOAA, Digital Coast Data Request, 2015) | 109 | | Figure 13-9. Bar chart of total monthly energy produced and consumed by Kekaha Agriculture Association and their lessees and the total energy sold to Kauai Island Utility Cooperative. (Source: Kekaha Agriculture Association, 2015) | 110 | | Figure 13-10. Map of the Kekaha Agriculture Assocation Service Area along with the Department of Hawaiian Home Lands (DHHL) Waimea parcel. (Source: State of Hawaii, Department of Hawaiian Homelands, 2011; State of Hawaii Office of Planning, 2004c; State of Hawaii, Commission on Water Resource Management, 2015f) | 111 | | Figure 13-11. Mean daily irrigation water usage for primary users of the Kekaha (top) and Kokee (bottom) irrigation systems from 2010 to 2014 (Source: Kekaha Agriculture Association, 2015). *values estimated | 112 | | Figure 13-12. Mean daily flow in the Olokele Ditch at Tunnel No. 12 (USGS station 16036000) and in Olokele Stream 0.25 mi downstream of diversion (USGS station 16034000) from July 1915 to June 1916 (Source: USGS). | 113 | | Figure 13-13. Diagram of KIUC's West Kauai Energy Project (Source: KIUC.coop/wkep, [accessed 2021]) | 115 | | Figure 13-14. Mean daily simulated diverted flow into Kokee Ditch after contributions from Waiakoali Stream, Kawaikoi Stream, and Kauaikinana Stream (grey dots), 30-day moving average (black line), and the 11 mgd reference (red line) from 07/01/1919 to 12/31/1925 | 116 | # **List of Tables** | Table 2-1 Area and percentage of surface geologic features for Waimea hydrologic unit. (Source: Sherrod et al, 2007) | 11 | |--|----| | Table 2-2. Area and percentage of soil types for the Waimea hydrologic unit. | 12 | | Table 2-3. Fog drip to rainfall ratios for the windward slopes of Mauna Loa on the island of Hawaii and approximate contributions to the Waimea Hydrologic Unit based on an elevation range of 2000-6500 ft | 16 | | Table 2-4. C-CAP land cover classes and area distribution in Waimea hydrologic unit. (Source: National Oceanographic and Atmospheric Agency, 2015) | 21 | | Table 2-5. HI-GAP land cover classes and area distribution in Waimea hydrologic unit. (Source: HI-GAP, 2005) | 22 | | Table 2-6. Drought risk areas for Kauai. (Source: University of Hawaii, 2003) | 23 | | Table 3-1. Information of wells located in Waimea hydrologic unit (Source: State of Hawaii, Commission on Water Resource Management, 2015d). | 32 | | Table 3-2. Summary of ground water use reporting in the island of Kauai (Source: State of Hawaii, Commission on Water Resource Management, 2015d). | 32 | | Table 3-3. Total flow (TFQ) and base flow (BFQ) actual (USGS) and estimated (by regression equation) flow statistics during historic (1919-1925) and current (1984-2013) time periods for undiverted streams in Waimea hydrologic unit. | 34 | | Table 3-4. Natural and regulated total flow (TF) and base flow (BF) statistics and monitoring periods for streams feeding the Kekaha and Olokele ditch systems in the lower Waimea hydrologic unit | 34 | | Table 3-5. Estimated flow metrics for mean monthly dry season positive PDO phase stream flows for diversions feeding the Kokee and Kekaha ditch systems. (Source: Gomez, <i>pers. comm.</i>) [flow metrics are in million gallons per day, mgd] | 39 | | Table 4-1. List of commonly mentioned native stream organisms. (Source: State of Hawaii, Division of Aquatic Resources, 1993) | 40 | | Table 4-2. Number of aquatic insect species collected via general sampling and benthic (surber) sampling in Kokee State Park Streams. (Source: Englund et al., 2000) | 44 | | Table 4-3. Number of native prey items of special concern and non-native prey items collected in rainbow trout stomachs (n = 80) by stream from 1997-1999. (Source: Englund et al., 2000) | 44 | | Table 4-4. Number of sites surveyed with identified species and mean (standard deviation, s.d.) number of native aquatic species by survey year based on point-quadrat survey methods. (Source: State of Hawaii Division of Aquatic Resources, 2015) | 45 | | Table 6-1. Hawaii Stream Assessment indicators of riparian resources for Waimea hydrologic unit | 55 | | Table 6-2. Management areas located within Waimea hydrologic unit. (Source: State of Hawaii, Division of Forestry and Wildlife, 2008a) | 56 | | Table 6-3. Watershed partnerships associated with the Waimea hydrologic unit. (Source: State of Hawaii, Division of Forestry and Wildlife, 2008b) | 57 | | Table 6-4. Wetland classifications for Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015n) | 57 | | Table 6-5. Distribution of native and alien plant species for Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015f) | 57 | | Table 6-6. Density of threatened and endangered plants for Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015i) | 58 | | Table 6-7. Estimated Net Present Value (NPV) for Koolau [Oahu] Forest Amenities. (Source: Kaiser, B. et al., n.d.) | 58 | |---|-----| | Table 12-1. Tax map key parcels with associated Land Commission Awards for the Waimea hydrologic unit | 77 | | Table 12-2. Summary of water use calculated from loi and loi complexes by island, and the entire state. (Source: Gingerich et al., 2007, Table 10) | 83 | | Table 12-3. Water-temperature statistics based on measurements collected at 15-minute intervals for loi complexes on the island of Maui. (Source: Gingerich et al., 2007, Table 7) | 84 | | Table 12-4. Cultural resource elements evaluated as part of the Hawaii Stream Assessment for Waimea Stream. | 85 | | Table 12-5. Existing and proposed land uses and area for the DHHL Waimea parcel. (Source: State of Hawaii, Department of Hawaiian Homelands, 2011) | 87 | | Table
13-1. Historic Timeline of Irrigation Systems in West Kauai. (Source: Wilcox, 1996) | 89 | | Table 13-2. Registered stream diversions for the Waimea Hydrologic Unit. (Source: State of Hawaii, Commission on Water Resource Management, 2015) | 92 | | Table 13-3. Registered diversions in the Waimea hydrologic unit: Kokee System | 93 | | Table 13-4. Agricultural Lands of Importance to the State of Hawaii and area distributions in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015g) | 104 | | Table 13-5. Agricultural land uses and area distributions in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015h) | 105 | | Table 13-6. Acerage and crop by year on the Mana Plain for the main lesees of the Kekaha Agriculture Assocation. (Source: Kekaha Agriculture Association, 2015) *average provided applicable to all years | 105 | | Table 13-7. Mean drip rrigation demand estimates for seed corn in the Kekaha Ditch service area based on IWREDSS scenarios modeled for two soil management techniques and two cover crop options given a 10 ft depth to water table. Irrigation Requirement (IRR) value in gallons per acre per day for the 1 in 5 year drought scenario is provided | 112 | | Table 13-8. Flow duration statistics (in millions of gallons per day, mgd) and mean daily flow (MDF) for Kokee Ditch, Waiakoali Stream, Kawaikoi Stream, and Kauaikinana Stream, and the stream flow below each diversion given the interim instream flow standards agreed upon by the Waimea Watershed Agreement based on the simulation of available water from 07/01/1919 to 12/31/1925. [note: statistics for streamflow below diversion do not reflect the flow remaining in the stream in excess of the maximum diversion capacity, which occurs during flows greater than Q50 and cannot be simulated] | 116 | # **Acronyms and Abbreviations** A&B Alexander & Baldwin AG agricultural ALISH Agricultural Lands of Importance to the State of Hawaii ALUM agricultural land use maps [prepared by HDOA] BFQ base flow statistics BLNR Board of Land and Natural Resources (State of Hawaii) C-CAP Coastal Change Analysis Program cfs cubic feet per second Code State Water Code (State of Hawaii) COM commercial Commission On Water Resource Management (DLNR) CPRC Compilation of Public Review Comments (PR-2008-07, CWRM CWA Clean Water Act (EPA) CWRM Commission on Water Resource Management (State of Hawaii) DAR Division of Aquatic Resources (State of Hawaii) DHHL Department of Hawaiian Home Lands (State of Hawaii) DLNR Department of Land and Natural Resources (State of Hawaii) DOH Department of Health (State of Hawaii) DWS Department of Water Supply (County of Maui) EA Environmental Assessment EIS Environmental Impact Statement EPA United States Environmental Protection Agency FEMA Federal Emergency Management Agency (Department of Homeland Security) FILEREF File Reference [in the Commission's records of registered diversions] ft fee gad gallons per acre per day GIS Geographic Information Systems G.L. Government Lease GOV government gpm gallons per minute Gr. Grant HAR Hawaii Administrative Rules HC&S Hawaiian Commercial and Sugar Company HDOA State Department of Agriculture (State of Hawaii) HI-GAP Hawaii Gap Analysis Program HOT hotel HSA Hawaii Stream Assessment IFS instream flow standard IFSAR Instream Flow Standard Assessment Report IND industry IRR irrigation requirements IWREDSS Irrigation Water Requirement Estimation Decision Support System KAA Kekaha Agriculture Association KIUC Kauai Island Utility Cooperative LCA Land Commission Award LUC Land Use Commission (State of Hawaii) MECO Maui Electric Company MF multi-family residential mgd million gallons per day Mgal/d million gallons per day mi mile MOU Memorandum of Understanding na not available NAWQA National Water Quality Assessment (USGS) NHLC Native Hawaiian Legal Corporation NIR net irrigation requirements NPDES National Pollutant Discharge Elimination System NPV Net Present Value NRCS Natural Resource Conservation Service (USDA) NVCS National Vegetation Classification System por. Portion REL religious RMT R.M. Towill Corporation SCS Soil Conservation Service (United States Department of Agriculture) Note: The SCS is now called the Natural Resources Conservation Service (NRCS) SF single family residential SPI Standardized Precipitation Index sq mi square miles TFQ total flow statistics TFQ₅₀ 50 percent exceedence probability TFQ₉₀ 90 percent exceedence probability TMDL Total Maximum Daily Load TMK Tax Map Key UHERO University of Hawaii's Economic Research Organization USDA United States Department of Agriculture USFWS United States Fish and Wildlife Service (Department of the Interior) USGS United States Geological Survey (Department of the Interior) WQS Water Quality Standards WRPP Water Resource Protection Plan (Commission on Water Resource Management) WTF water treatment facility ## 1.0 Introduction #### **General Overview** The hydrologic unit of Waimea is located southwest of Mount Waialeale, forming part of the Hawaiian island of Kauai (Figures 1-3 and 1-5). It covers an area of 85.7 square miles from 5,240 feet in elevation to the sea, with a mean basin elevation of 2,600 feet and a mean basin slope of 59 percent (Figure 1-4). The longest flow path in Waimea is 25.7 miles in length, traversing in a south-southwesternly direction from its headwaters in the Alakai Marsh to Hoalua Bay. Waimea Stream is composed of many tributaries, the largest of which is the Makaweli Stream (26.35 square miles, 15.6 miles in length), followed by the Koaie Stream (11.4 square miles, 14.4 miles in length), the Waiahulu Stream (20.5 square miles, 13.6 miles in length), and the Waiale Stream (8.44 square miles, 12.7 miles in length). The Waiahulu Stream is composed of five main tributaries: Kokee, Kauaikinana, Kawaikoi, Waiakoali, and Mohihi streams. Many other tributaries flow only intermittently in the upper sections in response to rainfall-runoff. The western half of the hydrologic unit is made up of the Na Pali-Kona Forest Reserve, the Waimea Canyon State Park and Kokee State Park (State of Hawaii) along with the Wainiha Preserve (The Nature Conservancy). The lower altitudes are very dry and occupied by grasses, shrubs and alien trees, while the upper regions support native ohia- and koa-dominated forests. In the lowest reaches along the stream there are cultivated taro lands. While most of the region has no permanent residences, the town of Waimea partialy lies within the unit resulting in a total population of 1297 people (U.S. Census Bureau Office of Planning 2011). The population figure does not account for residents living outside of the hydrologic unit who may rely on water from within the unit. Only a few state roads exist in the region, limiting access to large areas (Figure 1-6). Three main irrigation ditch systems divert water from the Waimea hydrologic unit: the Kokee Irrigation System, the Kekaha Irrigation System, and the Olokele Irrigation System. #### **Current Instream Flow Standard** The current interim instream flow standard (IFS) for Waimea Stream was established by way of Hawaii Administrative Rules (HAR) §13-169-44, which, in pertinent part, reads as follows: Interim instream flow standard for Kauai. The Interim Instream Flow Standard for all streams on Kauai, as adopted by the commission on water resource management on June 15, 1988, shall be that amount of water flowing in each stream on the effective date of this standard, and as that flow may naturally vary throughout the year and from year to year without further amounts of water being diverted offstream through new or expanded diversions, and under the stream conditions existing on the effective date of the standard. The current interim IFS became effective on October 8, 1988. Streamflow was not measured on that date; therefore, the current interim IFS is not a measurable value. #### Instream Flow Standards Under the State Water Code (Code), Chapter 174C, Hawaii Revised Statutes (HRS), the Commission on Water Resource Management (Commission) has the responsibility of establishing IFS on a stream-by-stream basis whenever necessary to protect the public interest in the waters of the State. Early in its history, the Commission recognized the complexity of establishing an IFS for the State's estimated 376 perennial streams and instead set interim IFS at "status quo" levels. These interim IFS were defined as the amount of water flowing in each stream (with consideration for the natural variability in stream flow and conditions) at the time the administrative rules governing them were adopted in 1988 and 1989. The Hawaii Supreme Court, upon reviewing the Waiahole Ditch Contested Case Decision and Order, held that such "status quo" interim IFS were not adequate to protect streams and required the Commission to take immediate steps to assess stream flow characteristics and develop quantitative interim IFS for affected Windward Oahu streams, as well as other streams statewide. The Hawaii Supreme Court also emphasized that "instream flow standards serve as the primary mechanism by which the Commission is to discharge its duty to protect and promote the entire range of public trust purposes dependent upon instream flows." To the casual observer, IFS may appear relatively simple to establish upon a basic review of the Code provisions. However, the complex nature of IFS becomes apparent upon further review of the individual components that comprise surface water hydrology, instream uses, noninstream uses, and their interrelationships. The Commission has the distinct responsibility of weighing competing uses for a limited resource in a legal realm that is continuing to evolve. The following illustration (Figure 1-1) was developed to illustrate the wide range of information, in relation to hydrology, instream uses, and noninstream uses that should be addressed in conducting a comprehensive IFS assessment. Figure 1-1.
Information to consider in setting measurable instream flow standards. # **Interim Instream Flow Standard Process** The Code provides for a process to amend an interim IFS in order to protect the public interest pending the establishment of a permanent IFS. The Code, at §174C-71(2), describes this process including the role of the Commission to "weigh the importance of the present or potential instream values with the importance of the present or potential uses of water for noninstream purposes, including the economic impact of restricting such uses." Recognizing the complexity of establishing measurable IFS, while cognizant of the Hawaii Supreme Court's mandate to designate interim IFS based on best available information under the Waiahole Combined Contested Case, the Commission at its December 13, 2006 meeting authorized staff to initiate and conduct public fact gathering. Under this adopted process (reflected in the left column of Figure 1-2), the Commission staff will conduct a preliminary inventory of best available information upon receipt of a petition to amend an existing interim IFS. The Commission staff shall then seek agency review and comments on the compiled information (compiled in an Instream Flow Standard Assessment Report) in conjunction with issuing a public notice for a public fact gathering meeting. Shortly thereafter (generally within 30 days), the Commission staff will conduct a public fact gathering meeting in, or near, the hydrologic unit of interest. **Figure 1-2.** Simplified representation of the interim instream flow standard and permanent instream flow standard processes. Keys steps of the adopted interim IFS process are depicted in the left column by the boxes drawn with dotted lines. #### **Instream Flow Standard Assessment Report** The Instream Flow Standard Assessment Report (IFSAR) is a compilation of the hydrology, instream uses, and noninstream uses related to a specific stream and its respective surface water hydrologic unit. The report is organized in much the same way as the elements of IFS are depicted in Figure 1-1. The purpose of the IFSAR is to present the best available information for a given hydrologic unit. This information is used to determine the interim IFS recommendations, which is compiled as a separate report. The IFSAR is intended to act as a living document that should be updated and revised as necessary, thus also serving as a stand-alone document in the event that the Commission receives a subsequent petition solely for the respective hydrologic unit. Each report begins with an introduction of the subject hydrologic unit and the current IFS status. Section 2.0 is comprised of the various hydrologic unit characteristics that, both directly and indirectly, impact surface water resources. Section 3.0 contains a summary of available hydrologic information, while Sections 4.0 through 12.0 summarize the best available information for the nine instream uses as defined by the Code. Noninstream uses are summarized in Section 13.0. Maps are provided in each section to help illustrate information presented within the section's text or tables. Finally, Section 14.0 provides a comprehensive listing of cited references and is intended to offer readers the opportunity to review IFSAR references in further detail. An important component of the IFSAR and the interim IFS process is the Compilation of Public Review Comments (CPRC). The CPRC serves as a supporting document containing the oral and written comments that are submitted as part of the initial public review process. Comments referred to within the IFSAR will identify both the section and page number where the original comment can be located in the CPRC. For example, a reference to "8.0-3" indicates the third page of comments in Section 8.0 of the CPRC. Following the preparation of the IFSAR and initial agency and public review, information may be added to the IFSAR at any time. Dates of revision will be reflected as such. Future review of the IFSAR, by agencies and the public, will only be sought when a new petition to amend the interim (or permanent) instream flow standard is pending. Recommendations for IFS amendments are prepared separately as a stand-alone document. Thus, the IFSAR acts solely as a compendium of best available information and may be revised further without the need for subsequent public review following its initial preparation. ## **Surface Water Hydrologic Units** Early efforts to update the Commission's Water Resource Protection Plan (WRPP) highlighted the need for surface water hydrologic units to delineate and codify Hawaii's surface water resources. Surface water hydrologic units served as an important first-step towards improving the organization and management of surface water information that the Commission collects and maintains, including diversions, stream channel alterations, and water use. In developing the surface water hydrologic units, the Commission staff reviewed various reports to arrive at a coding system that could meet the requirements for organizing and managing surface water information in a database environment, and could be easily understood by the general public and other agencies. For all intents and purposes, surface water hydrologic units are synonymous with watershed areas. Though Commission staff recognized that while instream uses may generally fall within a true surface drainage area, noninstream uses tend to be land-based and therefore may not always fall within the same drainage area. In June 2005, the Commission adopted the report on surface water hydrologic units and authorized staff to implement its use in the development of information databases in support of establishing IFS (State of Hawaii, Commission on Water Resource Management, 2005a). The result is a surface water hydrologic unit code that is a unique combination of four digits. This code appears on the cover of each IFSAR above the hydrologic unit name. ## **Surface Water Definitions** Listed below are the most commonly referenced surface water terms as defined by the Code. - **Agricultural use.** The use of water for the growing, processing, and treating of crops, livestock, aquatic plants and animals, and ornamental flowers and similar foliage. - **Channel alteration.** (1) To obstruct, diminish, destroy, modify, or relocate a stream channel; (2) To change the direction of flow of water in a stream channel; (3) To place any material or structures in a stream channel; and (4) To remove any material or structures from a stream channel. - **Continuous flowing water.** A sufficient flow of water that could provide for migration and movement of fish, and includes those reaches of streams which, in their natural state, normally go dry seasonally at the location of the proposed alteration. - **Domestic use.** Any use of water for individual personal needs and for household purposes such as drinking, bathing, heating, cooking, noncommercial gardening, and sanitation. - **Ground water**. Any water found beneath the surface of the earth, whether in perched supply, dike-confined, flowing, or percolating in underground channels or streams, under artesian pressure or not, or otherwise. - Hydrologic unit. A surface drainage area or a ground water basin or a combination of the two. - **Impoundment.** Any lake, reservoir, pond, or other containment of surface water occupying a bed or depression in the earth's surface and having a discernible shoreline. - **Instream Flow Standard.** A quantity of flow of water or depth of water which is required to be present at a specific location in a stream system at certain specified times of the year to protect fishery, wildlife, recreational, aesthetic, scenic, and other beneficial instream uses. - **Instream use.** Beneficial uses of stream water for significant purposes which are located in the stream and which are achieved by leaving the water in the stream. Instream uses include, but are not limited to: - (1) Maintenance of fish and wildlife habitats; - (2) Outdoor recreational activities; - (3) Maintenance of ecosystems such as estuaries, wetlands, and stream vegetation; - (4) Aesthetic values such as waterfalls and scenic waterways; - (5) Navigation; - (6) Instream hydropower generation; - (7) Maintenance of water quality; - (8) The conveyance of irrigation and domestic water supplies to downstream points of diversion; and - (9) The protection of traditional and customary Hawaiian rights. - **Interim instream flow standard.** A temporary instream flow standard of immediate applicability, adopted by the Commission without the necessity of a public hearing, and terminating upon the establishment of an instream flow standard. - **Municipal use.** The domestic, industrial, and commercial use of water through public services available to persons of a county for the promotion and protection of their health, comfort, and safety, for the protection of property from fire, and for the purposes listed under the term "domestic use." - **Noninstream use.** The use of stream water that is diverted or removed from its stream channel and includes the use of stream water outside of the channel for domestic, agricultural, and industrial purposes. - **Reasonable-beneficial use.** The use of water in such a quantity as is necessary for economic and efficient utilization, for a purpose, and in a manner which is both reasonable and consistent with the state and county land use plans and the public interest. - **Stream**. Any river, creek, slough, or natural watercourse in which water usually flows in a defined bed or channel. It is not essential that the flowing be uniform or uninterrupted. The fact that some parts of the bed or channel have been dredged or improved does not prevent the watercourse from being a stream. - **Stream channel.** A natural or artificial watercourse with a definite bed and banks which periodically or continuously contains flowing water. The channel referred
to is that which exists at the present time, regardless of where the channel may have been located at any time in the past. - **Stream diversion.** The act of removing water from a stream into a channel, pipeline, or other conduit. **Stream reach.** A segment of a stream channel having a defined upstream and downstream point. - **Stream system.** The aggregate of water features comprising or associated with a stream, including the stream itself and its tributaries, headwaters, ponds, wetlands, and estuary. - **Surface water.** Both contained surface water--that is, water upon the surface of the earth in bounds created naturally or artificially including, but not limited to, streams, other watercourses, lakes, reservoirs, and coastal waters subject to state jurisdiction--and diffused surface water--that is, water occurring upon the surface of the ground other than in contained water bodies. Water from natural springs is surface water when it exits from the spring onto the earth's surface. - **Sustainable yield.** The maximum rate at which water may be withdrawn from a water source without impairing the utility or quality of the water source as determined by the Commission. - Time of withdrawal or diversion. In view of the nature, manner, and purposes of a reasonable and beneficial use of water, the most accurate method of describing the time when the water is withdrawn or diverted, including description in terms of hours, days, weeks, months, or physical, operational, or other conditions. - **Watercourse.** A stream and any canal, ditch, or other artificial watercourse in which water usually flows in a defined bed or channel. It is not essential that the flowing be uniform or uninterrupted. **Figure 1-3.** Topographic map of the Waimea hydrologic unit and streams in southeast Kauai, Hawaii. (Source: U.S. Geological Survey, 1996; State of Hawaii, Commission on Water Resource Management, 2015c; State of Hawaii, Division of Aquatic Resources, 2005) **Figure 1-4.** Elevation range and the location of Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2004e; U.S. Geological Survey, 2001) Figure 1-5. Quickbird satellite imagery of Waimea hydrologic unit. (Source: State of Hawaii, Planning Department, 2004) Figure 1-6. Major and minor roads for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning 2015) ## 2.0 Unit Characteristics ## Geology The geology of the Waimea hydrologic unit is characterized by Tholeiitic basalts in the form of aa (lava characterized by jagged, sharp surfaces with massive, relatively dense interior) or pahoehoe (lava characterized by smooth, ropy characteristics) lava flows that poured out at progressively longer intervals so that numerous valleys were cut between the later lavas. There are three main age classes of lava flows in Waimea: 4.0-5.5 mya, 4.0-4.3 mya, and 3.5-4.0 mya. The oldest flows extend from the highest elevations to the coastline (Waimea Canyon Volcanic Series) and represent the shield building phase of the island (Table 2-1). The majority of Kauai was created by the Napali formation, which is characterized by thin layers of olivine basalt lava flows sloping from the central vent. Occasionally thin layers of ash and tephra are overlain, but pyroclastic eruptions were rare and constitute less than 1% of the volume of material found in the Napali. This formation is highly permeable to water. The second oldest flows are thick cladera filling flows that remained in the upper regions of the hydrologic unit (>1800 ft above sea level). At the end of the shield building phase, lava flow shifted from thin to thick, massive flows referred to as the Olokele Formation. This primarily existed in the western and northwestern parts of the island. The roughly 16 km diameter caldera is believed to have collapsed and then subsequently filled by these flows, which then spilled out and filled the deeply cut vallys, forming flat areas impermeable to water (Macdonald et al., 1960). This region eventually became the Alakai swamp. Numerous dike complexes also exist on the western side (Waimea Gulch) of the unit, along with a few on the eastern side of Makaweli Gulch and in the central regions, providing high-level ground water that is held up by the relatively lower permeability¹ flows and associated weathered soils and ash beds (Gingerich, 1999a). Perched aquifers may also contribute to surface water flows. Along the coast is a relatively small exposed area of the younger Koloa volcanic series and deposited alluvium (mostly sand and gravel), together comprising 6 percent of the hydrologic unit's surface geology. Koloa Volcanics are characterized by basaltic lava flows, cinder cone formations and by the building of small secondary shield volcanos (Grady 2006). They are highly permeable but there is little fresh basal water² as salt-water intrusion is common due to the low elevations and extensive groundwater pumping (Stearns and MacDonald, 1942; U.S. Geological Survey, 2007). The generalized geology of the Waimea hydrologic unit is depicted in Figure 2-1. **Table 2-1** Area and percentage of surface geologic features for Waimea hydrologic unit. (Source: Sherrod et al, 2007) | Name | Rock Type | Area
(mi²) | Percent
(%) | |----------------------|--|---------------|----------------| | Waimea Canyon Basalt | Pahoehoe and Aa, Breccia, Near-vent Cinder | 79.54 | 92.88 | | Koloa Volcanics | Pahoehoe and Aa, Conglomerate | 3.10 | 3.62 | | Alluvium | Sand and Gravel | 2.13 | 2.49 | | Older Alluvium | Sand and Gravel | 0.62 | 0.73 | | Beach Deposits | Well-sorted sand and gravel | 0.01 | 0.02 | ## Soils The Waimea hydrologic unit consists largely of soils that are fairly impermeable. The upper portion of the hydrologic unit has an impermeable basalt layer due to the collapsed Mount Waialeale caldera that ¹ Permeability is the ease with which water passes through material. It is a factor in determining whether precipitation runs off on the surface or descends into the ground. precipitation runs off on the surface or descends into the ground. ² Basal water is generally considered to be ground water with a water table (the elevation of the top of the water) to be near sea level. limits the downward movement of water, resulting in the Alakai marsh and associated with Alakai soils. Water moves laterally until it either seeps out as springs or base flow³. Most of the region has a thin layer of granular heavy clay loam (2" thick) underlain by dark reddish-brown clay about 12" thick. The substratum is hard rock and surface soil permeability is moderate to moderately slow resulting in rapid runoff and severe erosion hazard. The less sloping tops of ridges and interfluves (regions of higher land between valleys in the same hydrologic unit) are poorly drained but still support moderate infiltration (Figure 2-2). The lowlands of the hydrologic unit are characterized by well-drained clay and rough broken land – very steep land broken by numerous intermittent drainage channels. The numerous gulches and mountainsides have slopes of 40 to 70 percent, leading to high rates of slopewash. Runoff is rapid in these soils and geologic erosion is active. The soils of rough broken land are not uniform (Table 2-2). The clay is moderately permeable with slow to medium runoff and a slight to moderate erosion hazard (U.S. Department of Agriculture, Soil Conservation Service, 1972). Table 2-2. Area and percentage of soil types for the Waimea hydrologic unit. | Map Unit | Description | Area (mi²) | Percent (%) | |--|----------------|------------|-------------| | rAAE | Alakai | 7.46 | 8.71 | | BM | Badland | 1.61 | 1.88 | | BS | Beaches | 0.01 | 0.01 | | HMA, HnA, HrB | Hanalei | 0.58 | 0.68 | | HNUD, HNUF | Hulua, gr | 0.28 | 0.32 | | IoB, IoC | Loleau | 0.01 | 0.01 | | JkB | Jaucas va | 0.05 | 0.06 | | Ke | Kalihi | 0.07 | 0.08 | | KSKE, KSKF | Kokee | 6.02 | 7.03 | | LuB | Lualualei | 0.01 | 0.01 | | MaC, MaD, MaE, MaE3 | Mahana | 0.79 | 0.92 | | MgB, MgC, MgD, MgE2,
MhB, MhC, MhD, MhE | Makaweli | 0.87 | 1.01 | | NcC, NcD, NcD2 | Niu | 0.13 | 0.16 | | NnC | Nonopahu | 0.01 | 0.01 | | OID, OME, OMF | Oli | 2.11 | 2.46 | | PGE | Paaiki | < 0.01 | < 0.01 | | PdA | Pakala | 0.61 | 0.71 | | PHXC | Pakala, e | 0.34 | 0.40 | | PwE, PwD, PwC | Puu Opae | 0.09 | 0.10 | | rRH | Riverwash | 0.18 | 0.21 | | rRO | Rock outcrop | 30.19 | 35.25 | | rRR | Rough broken | 6.16 | 7.19 | | rRT | Rough mountain | 17.56 | 20.51 | | rRU | Rubble la | 0.10 | 0.12 | | rWAF | Waialeale | 5.39 | 6.30 | | WJF | Waiawa, e | 3.35 | 3.92 | The U.S. Department of Agriculture's Natural Resources Conservation Service (formerly known as the Soil Conservation Service) divides soils into hydrologic soil groups (A, B, C, and D) according to the rate - ³ Base flow is the flow of water into a stream from the ground from persistent, sources (such as the seepage of ground water) and maintains streamflow between water-input events (i.e. during periods of no rainfall). at which infiltration (intake of water) occurs when the soil is wet. The higher the infiltration rate, the faster the water is absorbed into the ground and the less there is to flow as surface runoff. Group A soils have the highest infiltration rates; group D soils have the lowest. In the Waimea hydrologic unit, 0.40 percent of soils are group A; 13.93 percent group B; 17.08 percent group C; and 68.28 percent group D. The hydrologic unit is largely dominated by steep gulches with soils in the Kokee series including numerous rock outcropings and rough mountain soils (Table 2-2). The center of the hydrologic unit consists of rough broken and rough mountainous soils while alluvium (riverwash) dominates the lower reaches (U. S. Department of Agriculture, Natural Resources Conservation Service, Conservation Engineering Division, 1986). ## Rainfall Rainfall distribution on Mount
Waialeale is governed by the orographic⁴ effect (Figure 2-3). Orographic precipitation occurs when the prevailing northeasterly trade winds lift warm air up the windward side of the mountains into higher elevations where cooler temperatures persist. As moist air cools, water condenses and the air mass releases precipitation. As a result, frequent and heavy rainfall is observed on windward mountain slopes. When cloud height is restricted by the temperature inversion⁵, moist air reaches the fog drip zone, favoring fog drip over rain-drop formation (Sholl et al., 2002). Fog drip is a result of cloud-water droplets impacting vegetation (Scholl et al, 2002) and it can contribute significantly to ground water recharge. The temperature inversion zone typically extends from 6,560 feet to 7,874 feet. This region is influenced by a layer of moist air below and dry air above, making climate extremely variable (Giambelluca and Nullet, 1992). Above the inversion zone, the air is dry and the sky is frequently clear (absence of clouds) with high solar radiation, creating an arid atmosphere with little rainfall. A majority of the mountains in Hawaii peak in the fog drip zone. In such cases, air passes over the mountains, warming and drying while descending the leeward mountain slopes. Precipitation on Mount Waialeale is influenced by its northernmost position relative to the main Hawaiian Islands, providing more exposure to frontal systems during winter. The highest position lies in the trade wind inversion layer (6,000 feet above sea level) resulting in peak rainfall potential. The fog drip zone on the windward side of Waialeale extends from the cloud base level at 1,970 feet to the lower limit of the most frequent temperature inversion base height at 6,560 feet (Giambelluca and Nullet, 1992). The steep gradient around the island forces moisture-laden air to rapidly rise in elevation (over 3,000 feet) in a short distance, resulting in a rapid release of rainfall in one location. Finally, the relatively round, conical shape of the mountain exposes all sides of the peak to wind and moisture. The Waimea hydrologic unit is situated on the leeward flank of Mount Waialeale and as such receives little to no orographic rainfall (Figure 2-5). The high spatial variability in rainfall is evident where the mean annual rainfall decreases by about 40 inches with an average 500-foot drop in elevation. In the northwest regions rainfall is highest during the months of December and January, where the mean monthly rainfall is 10.6 inches. In the northeast regions mean monthly rainfall can reach as high as 18 inches from November to March. The driest months are May to September during which an average of less than 4 inches of rain fall each month. _ ⁴ Orographic refers to influences of mountains and mountain ranges on airflow, but also used to describe effects on other meteorological quantities such as temperature, humidity, or precipitation distribution. ⁵ Temperature inversion refers to the elevation in the atmosphere at which there is a switch between decreasing air temperature with increasing elevation to increasing air temperature with increasing elevation. Figure 2-1. Generalized geology of Waimea hydrologic unit. (Source: Sherrod et al., 2007) Figure 2-2. Soil classification in Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015m) Figure 2-3. Orographic precipitation in the presence of mountains higher than 6,000 feet. Currently, fog drip data for leeward slopes are non-existant. Shade (1999) used the monthly fog drip to rainfall ratios for the windward slopes of Mauna Loa on the island of Hawaii (Table 2-3) to calculate fog drip contribution to the water-budget in windward east Maui. The fog drip to rainfall ratios were estimated using: 1) the fog drip zone boundaries for east Maui (Giambelluca and Nullet, 1991); and 2) an illustration that shows the relationship between fog drip and rainfall for the windward slopes of Mauna Loa, island of Hawaii (Juvik and Nullet, 1995). This method was used to determine the contribution of fog drip in Waimea hydrologic unit, which is calculated by multiplying the ratios with the monthly rainfall values (Giambelluca et al, 2013). Calculations show that approximately 50 percent of Waimea lies in the fog drip zone based on elevation. The total contribution from fog drip to the water budget based on percent of fog drig from monthly rainfall is about 30%, assuming the same ratios apply to leeward slopes (Table 2-3). **Table 2-3**. Fog drip to rainfall ratios for the windward slopes of Mauna Loa on the island of Hawaii and approximate contributions to the Waimea Hydrologic Unit based on an elevation range of 2000-6500 ft. | Month | Ratio (%) | Mean
Rainfall (in) | Contribution (in) | |-----------|-----------|-----------------------|-------------------| | January | 13 | 11.91 | 1.55 | | February | 13 | 9.87 | 1.28 | | March | 13 | 12.06 | 1.57 | | April | 27 | 9.69 | 2.62 | | May | 27 | 8.52 | 2.30 | | June | 27 | 6.18 | 1.67 | | July | 67 | 7.14 | 4.78 | | August | 67 | 6.45 | 4.32 | | September | 67 | 6.51 | 4.36 | | October | 40 | 8.47 | 3.39 | | November | 40 | 11.72 | 4.69 | | December | 27 | 12.75 | 3.44 | ## **Solar Radiation** Solar radiation is the sun's energy that arrives at the Earth's surface after considerable amounts have been absorbed by water vapor and gases in the Earth's atmosphere. The amount of solar radiation to reach the surface in a given area is dependent in part upon latitude and the sun's declination angle (angle from the sun to the equator), which is a function of the time of year. Hawaii's trade winds and the temperature inversion layer greatly affect solar radiation levels, the primary heat source for evaporation. High mountain ranges block moist trade-wind air flow and keep moisture beneath the inversion layer (Lau and Mink, 2006). As a result, windward slopes tend to be shaded by clouds and protected from solar radiation, while dry leeward areas receive a greater amount of solar radiation and thus have higher levels of evaporation. In Waimea, average annual solar radiation is 201.75 W/m² per day with a range of 148.2-219.9 W/m² per day (Figure 2-5). It is greatest at the coast and decreases toward the uplands, where cloud cover is more common (Giambelluca et al. 2014). ## **Evapotranspiration** Evaporation is the loss of water to the atmosphere from soil surfaces and open water bodies (e.g., streams and lakes). Evaporation from plant surfaces (e.g., leaves, stems, flowers) is termed transpiration. Together, these two processes are commonly referred to as evapotranspiration, and it can significantly affect water yield because it determines the amount of rainfall that is lost to the atmosphere. On a global scale, the amount of water that evaporates is about the same as the amount of water that falls on Earth as precipitation. However, more water evaporates from the ocean whereas on land, rainfall often exceeds evaporation. The rate of evaporation is dependent on many climatic factors including solar radiation, albedo⁶, rainfall, humidity, wind speed, surface temperature, and sensible heat advection⁷. Higher evaporation rates are generally associated with greater net radiation, high wind speed and surface temperature, and lower humidity. A common approach to estimating evaporation is to employ a relationship between potential evaporation and the available water in the watershed. Potential evaporation is the maximum rate of evaporation if water is not a limiting factor, and it is often measured with evaporation pans. In Hawaii, pan evaporation measurements were generally made in the lower elevations of the drier leeward slopes where sugarcane was grown. These data have been compiled and mapped by Ekern and Chang (1985). Most of the drainage basins in Hawaii are characterized by a relatively large portion of the rainfall leaving the basin as evaporation and the rest as streamflow (Ekern and Chang, 1985). Based on the available pan evaporation data for Hawaii, evaporation generally decreases with increasing elevation below the temperature inversion and the cloud layer (Figure 2-3). At low elevations near the coast, pan evaporation rates are influenced by sensible heat advection from the ocean (Nullet, 1987). Pan evaporation rates are enhanced in the winter by positive heat advection from the ocean, and the opposite occurs in the summer when pan evaporation rates are diminished by negative heat advection (Giambelluca and Nullet, 1992). With increasing distance from the windward coasts, positive heat advection from dry land surfaces becomes an important factor in determining the evaporative demand at the slopes (Nullet, 1987). Shade (1999, Fig. 9) estimated pan evaporation rates of 30 inches per year below 2,000 feet elevation to 90 inches per year near the coast. Within the cloud layer, evaporation rates are particularly low due to the low radiation and high humidity caused by fog drip. Pan evaporation rates dropped below 30 inches per year in this area as reported in Shade (1999, Fig. 9). Near the average height of the temperature inversion, evaporation rates are highly variable as they are mainly influenced by the movement of dry air from above and moist air from below (Nullet and Giambelluca, 1990). Above the inversion, clear sky and high solar radiation at the summits cause increased evaporation, with pan evaporation rates of about 50 to 70 inches per year (Shade, 1999, Fig. 9). Ekern and Chang (1985) reported evaporation increased to 50 percent more than surface oceanic rates near the Mauna Kea crest on the island of Hawaii. Actual annual _ ⁶ Albedo is the proportion of solar radiation that is reflected from the Earth, clouds, and atmosphere without heating the receiving surface. ⁷ Sensible heat advection refers to the transfer of heat energy that causes the rise and fall in the air temperature. evapotranspiration in the Waimea hydrologic unit (Figure
2-6) averages 1.15 in per day and ranges from 0.37 to 2.67 in per day (Giambelluca et al. 2014). 159°40'0"W 159°36'0"W 159°32'0"W 2000 3000 2500 1500 Boundary of Waimea Hydrologic Unit 22°8'0"N 3500 22°4'0"N 22°0'0"N Annual Rainfall (in) 404 21°56'0"N Figure 2-4. Mean annual rainfall and elevation contour Waimea hydrologic unit. (Source: Giambelluca et al., 2013) Miles Figure 2-5. Mean annual solar radiation for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015c) Figure 2-6. Mean annual actual evapotranspiration for the Waimea hydrologic unit. (Source: Giambelluca et al., 2014) ## **Land Use** The Hawaii Land Use Commission (LUC) was established under the State Land Use Law (Chapter 205, Hawaii Revised Statutes) enacted in 1961. Prior to the LUC, the development of scattered subdivisions resulted in the loss of prime agricultural land that was being converted for residential use, while creating problems for public services trying to meet the demands of dispersed communities. The purpose of the law and the LUC is to preserve and protect Hawaii's lands while ensuring that lands are used for the purposes they are best suited. Land use is classified into four broad categories: 1) agricultural; 2) conservation; 3) rural; and 4) urban. Land use classification is an important component of examining the benefits of protecting instream uses and the appropriateness of surface water use for noninstream uses. While some may argue that land use, in general, should be based upon the availability of surface and ground water resources, land use classification continues to serve as a valuable tool for long-range planning purposes. As of 2014, the LUC designated 87 percent of the land in Waimea as conservation district, 13 percent as agricultural district and <1 percent as rural or urban (State of Hawaii, Office of Planning, 2015d). The conservation district is located in the upper part of the hydrologic unit, whereas the agricultural, rural, and urban districts lie in the lower part of the hydrologic unit (Figure 2-7). #### **Land Cover** Land cover for the hydrologic unit of Waimea is represented by two separate 30-meter Landsat satellite datasets. One of the datasets, developed by the Coastal Change Analysis Program (C-CAP), provides a general overview of the land cover types in Waimea, e.g., forest, grassland, shrub land, with minor developed areas, cultivated areas, and bare land (Table 2-4, Figure 2-8). The second is developed by the Hawaii Gap Analysis Program (HI-GAP), which mapped the National Vegetation Classification System (NVCS) associations for each type of vegetation, creating a more comprehensive land cover dataset (Table 2-5, Figure 2-9). Based on the two land cover classification systems, the land cover of Waimea consists mainly of forested areas. Over half of the hydrologic unit is made up of alien forests that spread throughout the upper slopes as part of the Na Pali-Kona Forest Reserve and the Kokee State Park. A mixture of ohia (*Meterosideros polymorpha*) forests and uluhe shrub lands can be found at intermediate slopes. Alien grasslands cover a majority of the lower altitudes near the coast with very little urban or industrial developments. **Table 2-4.** C-CAP land cover classes and area distribution in Waimea hydrologic unit. (Source: National Oceanographic and Atmospheric Agency, 2015) | Land Cover | Description | Area (mi²) | Percent of Unit | |----------------------------|---|------------|-----------------| | Evergreen Forest | Areas where more than 67% of the trees remain green throughout the year | 54.8 | 64 | | Grassland | Natural and managed herbaceous cover | 19.7 | 23 | | Scrub/Shrub | Areas dominated by woody vegetation less than 6 meters in height | 9.1 | 10.6 | | Low Intensity
Developed | Constructed surface with substantial amounts of vegetated surface | 1.2 | 1.4 | | Bare Land | Bare soil, gravel, or other earthen material with little or no vegetation | 0.3 | 0.4 | The land cover maps (Figures 2-8, 2-9) provide a general representation of the land cover types in Waimea. Given that the scale of the maps is relatively large, they may not capture the smaller cultivated lands or other vegetation occupying smaller parcels of land. Land cover types may also have changed slightly since the year when the maps were published. Community members have reported lands cultivated with tropical flowers, dryland (and some wetland) taro, sweet potato, banana, and papaya, primarily in the lowest portions of the hydrologic unit. Along the coast, a number of typical native and alien species have been reported. Some of those native species include ulei, naupaka kahakai, akia, lauwe, and hala. Table 2-5. HI-GAP land cover classes and area distribution in Waimea hydrologic unit. (Source: HI-GAP, 2005) | Land Cover | Area (mi²) | Percent of Unit | |---------------------------------|------------|-----------------| | Alien Shrubland | 18.994 | 22.18% | | Alien Forest | 16.404 | 19.16% | | Very Sparse to Unvegetated | 13.421 | 15.67% | | Closed Ohia Forest | 10.640 | 12.42% | | Open Ohia Forest | 8.418 | 9.83% | | Native Wet Forest and Shrubland | 4.773 | 5.57% | | Native Mesic Forest | 2.502 | 2.92% | | Open Koa-Ohia Forest | 2.157 | 2.52% | | Closed Koa-Ohia Forest | 2.147 | 2.51% | | Alien Grassland | 2.129 | 2.49% | | Native Wet Cliff Vegetation | 1.691 | 1.97% | | Native Dry Cliff Vegetation | 1.035 | 1.21% | | Agriculture | 0.461 | 0.54% | | Low Intensity Developed | 0.336 | 0.39% | | Bog Vegetation | 0.265 | 0.31% | | Kiawe Forest | 0.184 | 0.22% | | High Intensity Developed | 0.041 | 0.05% | | Wetland Vegetation | 0.027 | 0.03% | | Water | 0.005 | 0.01% | #### Flood Floods usually occur following prolonged or heavy rainfall associated with tropical storms or hurricanes. The magnitude of a flood depends on topography, ground cover, and soil conditions. Rain falling on areas with steep slopes and soil saturated from previous rainfall events tends to produce severe floods in low-lying areas. Four types of floods exist in Hawaii. Stream or river flooding occurs when the water level in a stream rises into the flood plain. A 100-year flood refers to the probability of the flood happening once in a hundred years, or 1 percent chance of happening in a given year. Flash floods occur within a few hours after a rainfall event, or they can be caused by breaching of a flood safety structure such as a dam. Flash flooding is common in Hawaii because the small drainage basins often have a short response time, typically less than an hour, from peak rainfall to peak streamflow. They are powerful and dangerous in that they can develop quickly and carry rocks, mud, and all the debris in their path down to the coast, causing water quality problems in the near-shore waters. Some floods can even trigger massive landslides, blocking off the entire stream channel. Sheet flooding occurs when runoff builds up on previously saturated ground, flowing from the high mountain slopes to the sea in a shallow sheet (Pacific Disaster Center, 2007). Coastal flooding is the inundation of coastal land areas from excessive sea level rise associated with strong winds or a tsunami. Natural stream flow data is only available in the headwater basins of the Waimea hydrologic unit, but based on regression modeling and actual stream gaging records, the flood magnitudes are extremely large in Waimea due to its large size. Based on U.S. Geological Survey Peak-Flow statistics at the long-term gaging station near Waimea town (station # 16031000), the 10 year, 50 year, and 100 year peak floods have magnitudes of 27,200 cfs, 41,200 cfs and 47,300 cfs, respectively. On August 15-18, 1950, the only known typhoon to reach the Hawaiian Islands produced rainfall totals as high as 50 in in 72 hours in (Chun, 1952). Peak flows topped the existing flood wall by one foot, causing tremendous damage in Waimea town. The Army Corps of Engineers constructed a flood control levee along the lowest reaches of the river to protect Waimea town. The Federal Emergency Management Agency (FEMA) developed maps that identify the flood-risk areas in an effort to mitigate life and property losses associated with flooding events. Based on these maps, FEMA identified a number of flood-risk zones in the Waimea hydrologic unit (Figure 2-10). ## **Drought** Drought is generally defined as a shortage of water supply that usually results from lower than normal rainfall over an extended period of time, though it can also result from human activities that increase water demand (Giambelluca et al., 1991). The National Drought Mitigation Center (State of Hawaii, Commission on Water Resource Management, 2005b) uses two types of drought definitions — conceptual and operational. Conceptual definitions help people understand the general concept of drought. Operational definitions describe the onset and severity of a drought, and they are helpful in planning for drought mitigation efforts. The four operational definitions of drought are meteorological, agricultural, hydrological, and socioeconomic. Meteorological drought describes the departure of rainfall from normal based on meteorological measurements and understanding of the regional climatology. Agricultural drought occurs when not enough water is available to meet the water demands of a crop. Hydrological drought refers to declining surface and ground water levels. Lastly, socioeconomic drought occurs when water shortage affects the general public. Impacts of drought are complex and can be categorized into three sectors: water supply; agriculture and commerce; and environment, public health, and safety sectors (State of Hawaii, Commission on Water Resource Management, 2005b). The water supply sector encompasses urban and rural drinking water systems that are affected when a drought depletes ground water supplies due to reduced recharge from
rainfall. The agriculture and commerce sector includes the reduction of crop yield and livestock sizes due to insufficient water supply for crop irrigation and maintenance of ground cover for grazing. The environmental, public health, and safety sector focuses on wildfires that are both detrimental to the forest ecosystem and hazardous to the public. It also includes the impact of desiccating streams, such as the reduction of instream habitats for native species. Droughts have affected the islands throughout Hawaii's recorded history. The most severe events of the recent past years are associated with the El Niño Southern Oscillations⁸. In January 1998, the National Weather Service's network of 73 rain gauges throughout the State did not record a single above-normal rainfall, with 36 rain gauges recording less than 25 percent of normal rainfall (State of Hawaii, Commission on Water Resource Management, 2005b). The most recent drought occurred in 2000-2002, affecting all islands, especially the southeastern end of the State. During this period, both mean annual flow and median flow in Kawaikoi Stream was 75% of normal. **Table 2-6.** Drought risk areas for Kauai. (Source: University of Hawaii, 2003) [Drought classifications of moderate, severe, and extreme have SPI values -1.00 to -1.49, -1.50 to -1.99, and -2.00 or less, respectively] | Sector | Drought Classification (based on 12-month SPI) | | | | | | | |---------------------------------------|--|--|--|--|--|--|--| | Sector | Moderate | Severe | Extreme | | | | | | Water Supply | Hanalei to Alakai | Koloa, Kapaa, Wailua,
Lihue, Poipu, Anahola | Kapaa, Wailua, Lihue,
Poipu, Hanalei,
Princeville, Kilauea,
Anahola | | | | | | Agriculture and Commerce | Waimea, Poipu, Lihue,
Anahola, Kekeha/Mana | Lihue | Lihue | | | | | | Environment, Public Health and Safety | Waimea | Lihue, Poipu, Wailua | Lihue, Poipu, Koloa | | | | | _ ⁸ El Niño Southern Oscillations (ENSO) are 3-7 year climate patterns that occur due to a generalized warming of mid-lattitude ocean water which influences the circulation patterns of air masses, driving changes in the distribution of rainfall With Hawaii's limited water resources and growing water demands, droughts will continue to adversely affect the environment, economy, and the residents of the State. Aggressive planning is necessary to make wise decisions regarding the allocation of water at the present time, and conserving water resources for generations to come. The Hawaii Drought Plan was established in 2000 in an effort to mitigate the long-term effects of drought. One of the projects that supplemented the plan was a drought risk and vulnerability assessment of the State, conducted by researchers at the University of Hawaii (2003). In this project, drought risk areas were determined based on rainfall variation in relation to water source, irrigated area, ground water yield, stream density, land form, drainage condition, and land use. Fifteen years of historical rainfall data were used. The Standardized Precipitation Index (SPI) was used as the drought index because of its ability to assess a range of rainfall conditions in Hawaii. It quantifies rainfall deficit for different time periods, i.e., 3 months and 12 months. Results of the study for Kauai are summarized in Table 2-6. Based on the 12-month SPI, the Kapaa, Wailua, Lihue, and Poipu regions have the greatest risk to drought impact of the Kauai regions because of its dependence on surface water sources, limited rainfall, relatively high drought frequency, and high population density. The growing population in the already densely populated area further stresses the water supply. The Waimea region is vulnerable to drought in the agricultural sector and has substantial wildfire risk, but these are away from large population concentrations. In addition to drought effects on agriculture and the community, drought can increase the risk of wildfire danger. Since 1999, there have been 70 wildfires in the Waimea hydrologic unit, with an average of 0.40 acres burned in each fire. Fire danger in regions adjacent to Waimea is also of concern as 123 separate wildfires have burned with an average size of 2.72 acres (Figure 2-11). With growth of fire-prone non-native species in the region, wildfire risk to life and property is high and water resources are often needed to fight such fires. Figure 2-7. State land use district boundaries in Waimea hydrologic unit (Source: State of Hawaii, Office of Planning, 2015d). Figure 2-8. C-CAP land cover in Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015k). Figure 2-9. Hawaii GAP land cover classes in Waimea hydrologic unit (Source: State of Hawaii, Office of Planning, 2015f). Figure 2-10. FEMA flood zone regions in Waimea hydrologic unit (Source: Federal Emergency Management Agency, 2014). Figure 2-11. Map of wildfire ignition points in southwest Kauai since 1999. (Source: HWMO, 2013) # 3.0 Hydrology The Commission, under the State Water Code, is tasked with establishing instream flow standards by weighing "the importance of the present or potential instream values with the importance of the present or potential uses of water for noninstream purposes, including the economic impact of restricting such uses." While the Code outlines the instream and offstream uses to be weighed, it assumes that hydrological conditions will also be weighed as part of this equation. The complexity lies in the variability of local surface water conditions that are dependent upon a wide range of factors, including rainfall, geology, and human impacts, as well as the availability of such information. The following is a summary of general hydrology and specific hydrologic characteristics for water in Waimea. #### Streams in Hawaii Streamflow consists of: 1) direct surface runoff in the form of overland flow and subsurface flow that rapidly returns infiltrated water to the stream; 2) ground water discharge in the form of base flow; 3) water returned from streambank storage; 4) rain that falls directly on streams; and 5) additional water, including excess irrigation water discharged into streams by humans (Oki, 2003). The amount of runoff and ground water that contribute to total streamflow is dependent on the different components of the hydrologic cycle, as well as man-made structures such as diversions and other stream channel alterations (e.g., channelizations and dams). Streams in Hawaii can either gain or lose water at different locations depending on the geohydrologic conditions. A stream gains water when the ground water table is above the streambed. When the water table is below the streambed, the stream can lose water. Where the streambed is lined with concrete or other low-permeability or impermeable material, interaction between surface water and ground water is unlikely. Another way that ground water influences streamflow is through springs. A spring is formed when a geologic structure (e.g., fault or fracture) or a topographic feature (e.g., side of a hill or a valley) intersects ground water either at or below the water table. It can discharge ground water onto the land surface, directly into the stream, or into the ocean. Figure 3-1 illustrates a valley that has been incised into a high-level water table, resulting in ground water discharges that contribute directly to streamflow and springs that contribute to streamflow. At places where erosion has removed the caprock, ground water discharges either as springs or into the ocean as seeps. Currently, information on whether Waimea River or its tributaries are gaining or losing is unavailable. #### **Ground Water** Ground water is an important component of streamflow as it constitutes the base flow of Hawaiian streams. When ground water is withdrawn from a well, the water level in the surrounding area is lowered. Nearby wetlands or ponds may shrink or even dry up if the pumping rate is sufficiently high (Gingerich and Oki, 2000). The long-term effects of ground water withdrawal can include the reduction of streamflow, which may cause a decrease in stream habitats for native species and a reduction in the amount of water available for irrigation. The interaction between surface water and ground water warrants a close look at the ground water recharge and demand within the State as well as the individual hydrologic units. _ ⁹ Base flow is the water that enters a stream from persistent, slowly varying sources (such as the seepage of ground water), and maintains stream flow between water-input events (i.e., it is the flow that remains in a stream in times of little or no rainfall). In Hawaii, ground water is replenished by recharge from rainfall, fog drip, and irrigation water that percolates through the plant root zone to the subsurface rock. This recharge is a critical part of the water cycle and provides the main source of water for consumption in Kauai. Recharge can be captured in three major ground water formations: 1) fresh water-lens; 2) dike-impounded; and 3) perched water. The fresh water-lens provides the most important sources of ground water for consumption and includes a lens-shaped layer of fresh water, an intermediate transition zone of brackish water, and underlying salt water (Figure 3-1). In Hawaii, a vertically extensive fresh water-lens system can extend several hundreds or even thousands of feet below mean sea level. A dike-impounded system is found in rift zones and calderas of a volcano where low-permeability dikes compartmentalize areas of permeable volcanic rocks, forming high-level water bodies (Figure 3-1). Dikes may impound water to as high as 3,300 feet above mean sea level, as observed on Maui Island. A perched system is found in areas where low-permeability rocks impede the downward
movement of percolated water sufficiently to allow a water body to form in the unsaturated zone above the lowest water table (Gingerich and Oki, 2000). **Figure 3-1.** Diagram illustrating the ground water system west of Keanae Valley, northeast Maui, Hawaii. Arrows indicate general direction of ground water flow (Source: Gingerich, 1999b). The hydrologic unit of Waimea spans the Waimea and Makaweli aquifer systems. A general overview of the ground water occurrence and movement in this area is described in Gingerich (1999b) and illustrated in Figure 3-1. Ground water is found in dike-impounded structures of the Waimea Canyon Basalt as well as in the fresh water-lens system. A thick layer of impermeable caldera filling lava forms an aquitard in the upper region of the hydrologic unit known as the Alakai Marsh. This aquitard limits deep percolation of rainfall, resulting in numerous high-elevation fresh water streams. Additionally, the high-elevation saturated zone is not present near the coast because erosion has removed the low-permeability layers formed by the Koloa Volcanics. Withdrawal from wells at or below sea level should not affect the high- elevation water table because the thick unsaturated zone will prevent any significant changes in the vertical flow gradient. However, wells that remove water from the high-elevation water body can reduce streamflow and recharge into the freshwater lens. The County of Kauai operates a municipal well near the coast (well no. 5939-01) and the State of Hawaii operates two wells for supplying the Kokee State Park Lodge and cabins (well no. 0739-01 and 0739-03). Detailed information for each well is specified in Table 3-1. Eight drill holes were bored in 1963 in the Kawaikoi catchment by the State of Hawaii Department of Land and Natural Resources Engineering Division as part of a study to determine the feasibility of generating a reservoir. These holes were never used as wells and are abandoned. As of 2005, the 12-month moving average for existing groundwater withdrawals from the Waimea aquifer section was 3.145 mgd and the 2006 total ground water demand of the Waimea aquifer system was only 4.762 mgd, which is well below the aquifer's current sustainable yield of 37 million gallons per day (State of Hawaii, Commission on Water Resource Management, 2015d). The nearby Kekaha and Makaweli aquifer systems have sustainable yields of 10 and 26 mgd, respectively. A majority of the reported ground water use is for domestic-residential single-family dwelling units (88 percent), municipal use (7.1 percent), and agriculture (2.9 percent) (Table 3-2). **Table 3-1.** Information of wells located in Waimea hydrologic unit (Source: State of Hawaii, Commission on Water Resource Management, 2015d). [Negative elevation values indicate feet below mean sea level; positive elevation values indicate feet above mean sea level. Pump rate measured in gallons per minute (gpm); -- indicates value is unknown.] | Well
number | Well Name | Well Owner | Year
drilled | Use | Ground
elevation
(feet) | Well
depth
(feet) | Pump
elevation
(feet) | Pump
depth
(feet) | Pump
rate
(gpm) | |----------------|----------------|--------------------|-----------------|---------------------|-------------------------------|-------------------------|-----------------------------|-------------------------|-----------------------| | 5939-01 | Waimea Shaft 9 | Kauai DWS | 1932 | Municipal
County | 40 | 43 | | | 300 | | 0739-02 | Kokee Park B | Hawaii State Parks | 1986 | Unused | 3544 | 22 | | | | | 0738-01 | Kokee-Waineke | Hawaii DLNR | 2005 | Unused | 3558 | 119 | | | 0 | | 0739-03 | Kokee-Noe | Land Division | 1996 | Municipal
State | 3543 | 152 | 3430 | 113 | 40 | | 0739-01 | Kokee Park A | Hawaii State Parks | 1986 | Municipal
State | 3560 | 39 | 3533 | 27 | 40 | **Table 3-2.** Summary of ground water use reporting in the island of Kauai (Source: State of Hawaii, Commission on Water Resource Management, 2015d). [Agriculture category includes water use for crops, livestock, and nursery plants; irrigation category includes water use for golf courses, landscape features, and other infrastructures. Mgd equals million gallons per day.] | Use Category | Use Rate (mgd) | Percent of Total (%) | |--------------|----------------|----------------------| | Agriculture | 0.137 | 2.88 | | Domestic | 4.193 | 88.05 | | Industrial | 0.022 | 0.46 | | Irrigation | 0.058 | 1.21 | | Military | 0.014 | 0.29 | | Municipal | 0.338 | 7.10 | | Total | 4.762 | 100 | #### **Streamflow Characteristics** Natural flow conditions are available from two long-term continuous monitoring sites maintained by the U.S. Geological Survey on Kawaikoi Stream (station #16010000) and Waiale Stream (station #16019000). These stations were installed in 1919 and continue to collect data today. Historical streamflow data were also available from three additional stations at Kauikinana (station #16012000), Waiakoali (station #16011000), and Mohihi (station #16013000) streams from 1919 to 1925 (Figure 3-2). Estimated natural (undiverted) flow statistics for the ungaged sites are presented in Table 3-3. Median total flows (TFQ₅₀) and baseflow (BFQ₅₀) are available from a six-year period of mean daily flows from 1919-1925 at Kauaikinana, Kowaikoi, Waiakoali, Mohihi, and Waiale. Values reported for Kokee stream are estimates based on regression values using differences in catchment area and flow yield from the other watersheds. Present-day flow conditions are also reported for the two streams with continuous data and estimated for the other four. Mathematical models and equations are commonly used to represent hydrologic occurrences in the real world; however, they are typically based on a set of assumptions that often times render their estimates questionable in terms of accuracy and precision. This does not mean the public should entirely discount the estimates produced by these mathematical tools because they do provide quantitative and qualitative relative comparisons that are useful when making management decisions. Objections have been raised by several agencies in regards to the use of regression equations to estimate flow statistics. While the estimated statistics are presented to fulfill the purpose of compiling the best available information that will be considered in determining the interim IFS recommendations, the Commission staff does not intend to rely exclusively on the regression equations to make such important management decisions. The limitations and potential errors of the regression equations must also be considered. **Figure 3-2.** Ditches, diversions and gaging stations in the upper Waimea hydrologic unit that feed the Kokee Ditch system (Source: State of Hawaii, Commission on Water Resource Management, 2015a). **Table 3-3.** Total flow (TFQ) and base flow (BFQ) actual (USGS) and estimated (by regression equation) flow statistics during historic (1919-1925) and current (1984-2013) time periods for undiverted streams in Waimea hydrologic unit. [Flows are in cubic feet per second (cfs)] | | | | 1919-192 | 25 | | | | 1984-20° | 13 | | |-------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------| | location | TFQ ₅₀ | BFQ_{50} | TFQ ₉₅ | BFQ ₉₅ | source | TFQ ₅₀ | BFQ ₅₀ | TFQ ₉₅ | BFQ ₉₅ | source | | Kokee | 3.3 | 3.0 | 0.90 | 0.87 | regression | 2.8 | 2.6 | 0.82 | 0.76 | regression | | Kauaikinana | 2.0 | 1.7 | 0.46 | 0.43 | USGS | 1.9 | 1.4 | 0.42 | 0.37 | regression | | Kawaikoi | 13.5 | 10.3 | 3.6 | 3.3 | USGS | 11.0 | 8.7 | 3.1 | 2.9 | USGS | | Waiakoali | 3.3 | 2.8 | 0.93 | 0.65 | USGS | 2.9 | 2.4 | 0.85 | 0.78 | regression | | Mohihi | 3.4 | 2.7 | 0.62 | 0.52 | USGS | 2.9 | 2.3 | 0.57 | 0.45 | regression | | Waialae | 6.0 | 4.9 | 2.0 | 1.8 | USGS | 12.0 | 9.3 | 3.4 | 2.8 | USGS | One of the limitations of the regression equations is that they do not account for variable subsurface geology, such as those of intermittent streams and where springs discharge high flow to streams. The equations may overestimate flow statistics in intermittent streams as they do not account for losing reaches. On the other hand, the equations may underestimate the additional streamflow gained from springs. The equations tend to predict more accurately the higher flow statistics, TFQ₅₀ and BFQ₅₀, rather than the lower flow statistics, TFQ₉₅ and BFQ₉₅. According to Gingerich (2005), the most reliable estimates of natural and diverted streamflow duration statistics at gaged and ungaged sites in East Maui were made using a combination of continuous-record gaging station data, low-flow measurements, and values determined from the regression equations. In the lower Waimea hydrologic unit, water is diverted from the Koaie Stream and the Waimea River for the Kekaha Ditch and from the Olokele Stream, Waianuenue Stream and three minor tributaries for the Olokele Ditch. The U.S. Geological Survey monitored natural stream flow in the Koaie Stream (station #16017000) at an elevation of 3770 ft and regulated stream flow in the Waimea River (station #16016000) just above the diversion for the Kekaha Ditch as well as the Olokele Stream (station #16034000) above the diversion for the Olokele Ditch (Figure 3-3). Regulated stream flow has also been monitored for extended periods of time below the ditches on the Waimea River (station #16031000) and Makaweli stream (station #16036000) above their confluence (Table 3-4). **Table 3-4.** Natural and regulated total flow (TF) and base flow (BF) statistics and monitoring periods for streams feeding the Kekaha and Olokele ditch systems in the lower Waimea hydrologic unit. [Flows are in cubic feet per second (cfs)] | Stream name | USGS
station # | natural/regulation | Time period | TFQ ₅₀ | BFQ ₅₀ | TFQ ₉₅ | BFQ ₉₅ | |----------------------------
-------------------|--------------------|---|-------------------|-------------------|-------------------|-------------------| | Koaie Stream | 16019000 | natural | 1919-1932, 1954-
1968 | 8.2 | 6.2 | 2.3 | 2.1 | | Olokele Stream | 16034000 | natural | | | | | | | Waimea abv Kekaha
ditch | 16016000 | regulated | 1916-1918, 1925-
1948, 1949-1968 | 19.0 | 17.0 | 12.0 | 10.6 | | Waimea nr Waimea | 16031000 | regulated | 1910-1919,1943-
1968, 1969-
1972,1975-1997 | 16.0 | 11.5 | 1.4 | 1.1 | | Waimea blw Kekaha
ditch | 16028000 | regulated | 1921-1923, 1923-
1924, 1925-1947,
1948-1955 | 1.5 | 1.06 | 0.0 | 0.0 | | Makaweli Stream | 16036000 | regulated | 1943-2014 | 28.0 | 22.0 | 10.0 | 9.49 | **Figure 3-3.** Ditches, diversions and gaging stations in the lower Waimea hydrologic unit that feed the Kekaha and Olokele ditch systems. (Source: State of Hawaii, Office of Planning, 2004c; State of Hawaii, Commission on Water Resource Management, 2015a; 2015e) Ditch flow was monitored by the USGS (station #16032000) in the Olokele Ditch from 1910 to 1917. Mean ditch flow for this period was 44.71 mgd ($Q_{50} = 42.64$ mgd), which is higher than the 35.79 mgd more recently reported from December 2015 to March 2016. Assuming the diversion captures 100% of baseflow in the Olokele Stream, baseflow in the stream at the diversion can be approximated by the Q_{70} value of 35.46 mgd. # Long-term trends in flow In a different study, the USGS examined the long-term trends and variations in streamflow on the islands of Hawaii, Maui, Molokai, Oahu, and Kauai, where long-term stream gaging stations exist (Oki, 2004). The study analyzed both total flow and estimated base flow at 16 long-term gaging stations. Figure 3-5 illustrates the results of the study for 7 long-term gaging stations around the islands. According to the analyses, low flows generally decreased from 1913 to 2002, which is consistent with the long-term downward trends in rainfall observed throughout the islands during that period. Monthly mean base flows decreased from the early 1940s to 2002, which is consistent with the measured downward trend of low flows from 1913 to 2002. This long-term downward trend in base flow may imply a reduction of ground water contribution to streams. Kowaikoi streamflow declined from the 1920s to present day while Waiale streamflow has increased during this same period, suggesting a shift in regional rainfall patterns or changes in the hydrology of the Alakai Marsh. Changing streamflow characteristics could pose a negative effect on the availability of off stream use, such as drinking water for human consumption, and habitat for native stream fauna (Oki, 2004). **Figure 3-4.** Aquifer system area and well locations (with well numbers) in Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015d; State of Hawaii, Commission on Water Resource Management, 2015f) **Figure 3-5.** Cumulative departures of monthly mean flow from the mean of the monthly flows, Hawaii. This data is based on complete water years from 1913 through 2002. (Oki, 2004, Figure 4) ## Climate fluctuations and dry season flows Rainfall across Kauai is negatively correlated with the Pacific Decadal Oscillation (PDO), a recurring period (20-30 year) of climate fluctuations in the North Pacific Ocean. The PDO has warm (positive) and cool (negative) phases, which affect the movement of the upper levels of the troposphere. The warm phase is generally associated with above average ocean temperatures along the Pacific Coast of North America and the cool phase with above average ocean temperatures in the central Pacific with colder water in the eastern and tropical Pacific Ocean. Thus, during warm PDO phases there is less rainfall in Kauai while during cold PDO phases there is more rainfall. Warm PDO phases also suppress the occurrence of Kona storms. El Niño Southern Oscillations also interact with the PDO to generate drier winters during strong El Niño years and wetter winters during strong La Niña years. As a result, more or less stream flow may be available for instream and off-stream uses depending on the greater climatic fluctuations. Based on the availability of unregulated streamflow data in the Waimea hydrologic unit during cold-phase PDO from 1920-1924, and the current (2015) cold phase PDO, summer (May to October) season (dry season) streamflows were estimated to identify the lowest available flows for the Kokee System (Table 3-5). Data were scaled by upstream catchment size and monthly flows above diversions were then estimated. Such data were not available for the Kekaha System, however, ditch flows were monitored for 60 years (USGS station #16022000) and there is an overlapping period of streamflow data for the Waiahulu (USGS station #16016000) which can be used to partition the relative contribution of Koaie (56%) and Waiahulu (44%) streams assuming that the Kokee System is taking 100% of baseflows from the Waiakoali, Kawaikoi, Kauaikinana, and Kokee streams. Based on these estimates, the lowest available dry season flows are estimated in Table 3-4 at each of the current diversions. **Table 3-5.** Estimated flow metrics for mean monthly dry season positive PDO phase stream flows for diversions feeding the Kokee and Kekaha ditch systems. (Source: Gomez, *pers. comm.*) [flow metrics are in million gallons per day, mgd] | system/stream | mean (±SD) | Q50 | Q70 | Q90 | |-------------------------|-------------------|-------|------|------| | Kokee Irrigation System | | | | | | Waiakoali Stream | 1.69 (±0.48) | 1.31 | 0.76 | 0.42 | | Kawaikoi Stream | 9.16 (±2.63) | 6.43 | 3.99 | 2.30 | | Kauaikinana Stream | $1.34 (\pm 0.38)$ | 1.19 | 0.62 | 0.29 | | Kokee Stream | $1.37 (\pm 0.83)$ | | | | | Kekaha | | | | | | Waiahulu Stream* | 9.16 (±2.71) | 8.78 | 7.51 | 6.25 | | Koaie Stream | 11.65 (±2.99) | 11.17 | 9.55 | 7.91 | ^{*}Waiahulu values assume Kokee ditch is taking 100% of baseflow from Kokee Ditch diverted streams in the upper Waimea hydrologic unit. ### 4.0 Maintenance of Fish and Wildlife Habitat When people in Hawaii consider the protection of instream flows for the maintenance of fish habitat, they focus on a handful of native species including five native fishes (four gobies and one eleotrid), two snails, one shrimp, and one prawn. Table 4-1 below identifies native stream animals of Hawaii. **Table 4-1.** List of commonly mentioned native stream organisms. (Source: State of Hawaii, Division of Aquatic Resources, 1993) | Scientific Name | Hawaiian Name | Туре | |---------------------------|---------------------------|----------| | Awaous guamensis | 'O'opu nakea | Goby | | Lentipes concolor | 'O'opu hi'ukole (alamo'o) | Goby | | Sicyopterus stimpsoni | 'O'opu nopili | Goby | | Stenogobius hawaiiensis | 'O'opu naniha | Goby | | Eleotris sandwicensis | 'O'opu akupa (okuhe) | Eleotrid | | Atyoida bisulcata | 'Opae kala'ole | Shrimp | | Macrobrachium grandimanus | 'Opae 'oeha'a | Prawn | | Neritina granosa | Hihiwai | Snail | | Neritina vespertina | Hapawai | Snail | Hawaii's native stream animals have amphidromous life cycles (Ego, 1956) meaning they spend their larval stages in the ocean (salt water), then return to freshwater streams to spend their adult stage and reproduce. Newly hatched fish larvae are carried downstream to the ocean where they become part of the planktonic pool in the open ocean. The larvae remain at sea from a few weeks to a few months, eventually migrating back into a fresh water stream as juvenile *hinana*, or postlarvae (Radtke et al., 1988). Once back in the stream, the distribution of the five native fish species are largely dictated by their climbing ability (Nishimoto and Kuamoo, 1991) along the stream's longitudinal gradient. This ability to climb is made possible by a fused pelvic fin which forms a suction disk. *Eleotris sandwicensis* lacks fused pelvic fins and is mostly found in lower stream reaches. *Stenogobius hawaiiensis* has fused pelvic fins, but lacks the musculature necessary for climbing (Nishimoto and Kuamoo, 1997). *Awaous guamensis* and *Sicyopterus stimpsoni* are able to ascend moderately high waterfalls (less than ~20 meters) (Fitzsimons and Nishimoto, 1990), while *Lentipes concolor* has the greatest climbing ability and has been observed at elevations higher than 3,000 feet (Fitzsimons and Nishimoto, 1990) and above waterfalls more than 900 feet in vertical height (Englund and Filbert, 1997). Figure 4-1 illustrates the elevational profile of these native fresh water fishes. The maintenance, or restoration, of stream habitat requires an understanding of and the relationships among the various components that impact fish and wildlife habitat, and ultimately, the overall viability of a desired set of species. These components include, but are not limited to, species distribution and diversity, species abundance, predation and competition among native species, similar impacts by alien species, obstacles to migration, water quality, and streamflow. The Commission does not intend to delve into the biological complexities of Hawaiian streams, but rather to present basic evidence that conveys the general health of the subject stream. The biological aspects of Hawaii's streams have an extensive history, and there is a wealth of knowledge, which continues to grow and improve. #### Hawaii Stream Assessment One of the earliest statewide stream assessments was undertaken by the Commission in cooperation with the National Park Service's Hawaii Cooperative Park Service Unit. The 1990 Hawaii Stream Assessment (HSA) brought together a wide range of stakeholders to research and evaluate numerous stream-related attributes (e.g., hydrology, diversions, gaging, channelizations, hydroelectric uses, special areas, etc.). The HSA specifically focused on the inventory and assessment of four resource categories: 1) aquatic; 2) riparian; 3) cultural;
and 4) recreational. Though no field work was conducted in its preparation, the HSA involved considerable research and analysis of existing studies and reports. The data were evaluated according to predefined criteria and each stream received one of five ranks (outstanding, substantial, moderate, limited, and unknown). Based on the stream rankings, the HSA offered six different approaches to identifying candidate streams for protection: streams with outstanding resources (aquatic, riparian, cultural or recreational), streams with diverse or "blue ribbon" resources, streams with high quality natural resources, streams within aquatic resource districts, free flowing streams, or streams within the National Wild and Scenic Rivers database. Due to the broad scope of the HSA inventory and assessment, it continues to provide a valuable information base for the Commission's Stream Protection and Management Program and will continue to be referred to in various sections throughout this report. The HSA recommended that the Waimea hydrologic unit streams be listed as candidate streams for protection based on its substantial riparian, aquatic, cultural and recreational resources. Three out of four group one native species have been observed in Waimea stream: nakea (*Awaous stamineus*), nopili (*Sicyopterus stimpsoni*), and hihiwai (*Neritina granosa*). Additionally, seven group two native species have been observed in the stream. While the Waimea Stream originally provided habitat to a number of native species, due to significant land degradation from non-native ungulates and the introduction of non-native aquatic species, the HSA downgraded the stream to having only moderate aquatic resources. The HSA inventory was general in nature, resulting in major data gaps, especially those related to the distribution and abundance of aquatic organisms – native and introduced – inhabiting the streams. The State of Hawaii Division of Aquatic Resources (DAR) has since continued to expand the knowledge of aquatic biota in Hawaiian streams. Products from their efforts include the compilation and publication of an *Atlas of Hawaiian Watersheds and Their Aquatic Resources* for each of five major islands in the state (Kauai, Hawaii, Oahu, Molokai, and Maui). Each atlas describes watershed and stream features, distribution and abundance of stream animals and insect species, and stream habitat use and availability. Based on these data, a watershed and biological rating is assigned to each stream to allow easy comparison with other streams on the same island and across the state. The data presented in the atlases are collected from various sources, and much of the stream biota data are from stream surveys conducted by DAR. Currently, efforts have been focused on updating the atlas with more recent stream survey data collected statewide, and developing up-to-date reports for Commission use in interim IFS recommendations. The following is a brief summary of findings. - **Point Quadrat Survey.** In Waimea Stream the native freshwater shrimp *Atvoida bisulcata* was observed in all reach categories (estuary, lower, middle, upper, headwaters). Many native fish were observed in lower reaches (Eleotric sandwicensis, Lentipes concolor, Sicyopterus stimpsoni, Stenogobius hawaiiensis, Kuhlia xenura, Awaous guamensis) with E. sandwicensis, S. hawaiiensis, and S. stimpsoni and A. guamensis found in the middle reaches. S. stimpsoni and A. guamensis were the only native fish species found in the upper reaches or headwaters. The endemic mollusk Neritina granosa and the native freshwater prawn Macrobrachium grandimanus were also both found in lower reaches. Introduced Crayfish (*Procambarus clarkii*), rainbow trout (Oncorhynchus mykiss), green swordtail (Xiphophorus helleri) and juvenile poeciliids were commonly found in the headwaters and ditches. Poeciliid fishes are known to transmit parasites to native fishes. Introduced species also found in the lower, middle and upper reaches included Tahitian prawn (Macrobrachium lar), mosquitofish (Gambusia affinis), X. helleri, Mozambique tilapia (Oreochromis mossambiscus), and other undetermined tilapia species. Although the post larval recruitment of native fish was not surveyed, diversions that fully dewater streams would likely restrict the upstream passage of larval and adult stream animals. Streamflow restoration would likely benefit recruitment and survival of native species in the lower, middle and upper reaches, but not the headwater reaches, although interactions with nonnative species may complicate this. - Insect Survey. Waimea Stream met the DAR qualification for native insect diversity (>19 spp) and native macrofauna diversity (>5 spp.) giving it a high score for native species. Waimea Stream supports a high diversity of native and introduced insect biota in all reaches including native dragonflies (*Anax strenuous*) native true flies (*Limonia hawaiiensis*) and native damselflies (*Megalagrion spp.*). The native damselfly is currently proposed for listing as Endangered under the federal Endangered Species Act. Streamflow restoration may increase insect biota diversity; however, steps must be taken to avoid the release of invasive species from ditch waters into the stream. - Watershed and Biological Rating. The Waimea watershed rates above average for Kauai and average statewide for land cover. The extent of estuarine and shallow marine areas associated with Waimea ranks it higher than most watersheds on Kauai and across the state, while its stewardship rating is about average. The Waimea Stream is one of the largest in the state, supporting greater than average reach diversity resulting in a high total watershed rating. The high number and diversity of native species found thoroughout the watershed gives it one of the highest native species ratings on the island and across the state. These scores combined with Waimea Stream's relatively low rating for introduced genera resulted in its higher than average total biological rating and high overall rating. The ditch diversions in Waimea hydrologic unit block the migration of native amphidromous animals. At high flows, stream diversions are overtopped and streamflow is continuous from the upper reaches to the sea. When flow returns to baseflow level, diversions remove 100% of water from the stream, leaving sections dry. This prevents the upstream migration of native stream animals, restricts surviving adult animals to the disconnected deeper pools, entrains larve in the ditches, and results in postlarvae recruits being stranded at the stream mouth. In most cases, the diversion structure itself is often an obstacle to upstream migration. Restoration of streamflow and increased connectivity could lead to the development of a richer and more native-dominated community in the stream, although there is potential for introducing species from invasive-dominated reaches and ditches to native-dominated reaches. Another important consideration of fish and wildlife habitat is the presence of critical habitat. Under the Endangered Species Act, the U.S. Fish and Wildlife Service is responsible for designating critical habitat for threatened and endangered species. Though there are very few threatened or endangered Hawaiian species that are directly impacted by streamflow (e.g., Newcomb's snail), the availability of surface water may still have indirect consequences for other species. Based upon current designations, there are critical habitat areas associated with the watershed, including large areas of the Alakai marsh and some lower sloped regions that are habitat for plants such as *Nothocestrum peltatum, Solanum sandwicense*, *Lipochaeta micrantha, Exocarpos luteolus, Schiedea spergulina spergulina, Lipochaeta waimeaensis*. Further, increasing streamflow reduces breeding habitat for introduced mosquitoes that transmit diseases to threatened and endangered native birds. ### **Assessment of Upper Reaches** The Bishop Museum, in collaboration with the Smithsonian Institution, conducted stream surveys in Kokee State Park (Kauaikinana, Kawaikoi, Koaie, Waialae, Waiakoali) from 1997-1999 to assess stream habitat, including the availability of food and spawning areas for the establishment of a sustainable wild rainbow trout (*Onchorhynchus mykiss*) catch and release fishery (Englund et al. 2000). For many decades (possibly starting in the 1960s), rainbow trout had been introduced for sport fishing, but the long-term viability of rainbow trout reproduction had never been assessed. During this survey, riparian vegetation, stream substrate and water quality were evaluated at 10 locations (two per stream) along with aquatic insect sampling and trout gut content analysis to determine diet composition. Based on survey results, all streams in Kokee State Park maintain a diverse assemblage of native aquatic insects, with or without rainbow trout, and included an exceptionally abundant sampling of adult native damselflies, a group of special concern. No native fish were collected during this survey, but there were introduced Dojo loach (*Misgurnus anguillicaudatus*) and green swordtail (*Xiphophorus helleri*) along with introduced crayfish (*Procambarus clarki*). The lack of native amphidromous gobiids are most likely due to the high elevation at which no native fish are known to inhabit. Surber (benthic) sampling of riffle habitat in the five streams was ineffective at assessing stream invertebrate diversity, as only five taxa (two native) were collected. Sweep and dip nets focusing on adult aquatic insects were more effective at qualitatively assessing insect species composition. Englund et al. (2000) also found high numbers of the endemic Na Pali Hawaiian skating fly (*Sigmatineurum napali*) in many streams. While pre-trout introduction survey results are not available for inland Kauai waters, Englund et al. (2000) concluded that these streams continue to support a large
number of aquatic and terrestrial taxa, with an abundance of adult damselflies collected during the summer months and immature damselflies collected during winter months. Moreover, trout diets consisted mainly of terrestrial species, although there was little selective feeding by trout in regard to any particular aquatic or terrestrial taxon. All sampled streams had some representation of native aquatic insect taxa, and there was no statistical difference in native aquatic insect species in streams with and without trout (Table 4-3). The gut contents of 80 trout indicated that while some native aquatic insects were consumed by the introduced fish, the majority of their prey items (92.4% by number) were of either introduced aquatic insects or other prey items (including snails, terrestrial insects or other invertebrates and vertebrates). Drift-feeding trout find few native aquatic insects because of the native species habitat preference (fast flowing, turbulent habitat) and behavior. The sampled trout preferred caddisflies (19%), terrestrial millipedes (13%) and aquatic snails (12%) for most of their diet (Table 5). A number of rare terrestrial beetles were found in the stomachs of trout from Koaie Stream but not in other streams. Native and introduced species of freshwater snails were found in many trout stomachs in Koaie and Waiale streams with up to 41 individuals per trout. *Atyoida bisulcata*, the endemic mountain shrimp, was found in six trout stomachs but never collected in the stream. This is likely because stream sites were above diversions and represent the upper limit (> 1037 m elevation) of the range of *A. bisulcata*. **Table 4-2.** Number of aquatic insect species collected via general sampling and benthic (surber) sampling in Kokee State Park Streams. (Source: Englund et al., 2000) | | Kauaikinana | Kawaikoi | Waiakoali | Waialae | |--------------------------------------|-------------|----------|-----------|---------| | General sampling: native insects | 21 | 22 | 23 | 20 | | General sampling: introduced insects | 6 | 6 | 5 | 6 | | Benthic sampling: native insects | 0 | 2 | 0 | 1 | | Benthic sampling: introduced insects | 2 | 2 | 2 | 2 | Trout stocking ceased in Kokee State Park streams in 1992, but naturally reproducing trout were observed in Kokee, Kauaikinana, Koaie, and Waialae streams. Trout that had escaped from the ditch were found in Kauaikinana, Kawaikoi, and Waiakoali streams. The presence of naturally reproducing trout populations is likely dependent on types of habitat, impediments to movement (waterfalls) and the occurrence of spring-fed groundwater inputs that temper maximum summer water temperatures. Kauaikinana and Kokee streams are spring-fed groundwater driven systems that increase pH and decrease stream temperatures. By contrast, Kawaikoi, Waiakoali, and Waialae streams are driven by runoff from the Alakai Marsh. **Table 4-3.** Number of native prey items of special concern and non-native prey items collected in rainbow trout stomachs (n = 80) by stream from 1997-1999. (Source: Englund et al., 2000) | | | Kauaikinana | Kawaikoi | Waiakoali | Waialae | |-------------------------------|-------|-------------|----------|-----------|---------| | Native Damselflies | | 0 | 0 | 0 | 4 | | Native Dragonflies | | 4 | 0 | 0 | 1 | | Other Native Aquatic Insects | | 11 | 2 | 6 | 51 | | Introduced Aquatic Insects | | 128 | 4 | 31 | 169 | | Other Prey Items ¹ | | 164 | 34 | 184 | 300 | | • | Total | 307 | 40 | 221 | 525 | ¹includes snails, terrestrial insects, other invertebrates and vertebrates #### Assessment of Lower to Middle Reaches The lower to middle reaches of the Waimea hydrologic unit support many native species including Atyoida bisulcata, Eleotric sandwicensis, Sicyopterus stimpsoni, Stenogobius hawaiiensis, Kuhlia xenura, Awaous guamensis, Macrobrachium grandimanus. However, introduced crayfish (Procambarus clarkii), green swordtail (Xiphophorus helleri), tilapia sp., and gobiid sp. have also been found throughout these reaches. Introduced aquatic species can have a negative effect on native species by directly competing for food and habitat resources, introducing parasites, and preying on larval, juvenile, and sub-adult forms. The State of Hawaii Division of Aquatic Resources conducted point quadrat surveys in 1963, 1994 and 2002 to assess the distribution and density of native and non-native species (Figures 4-2 to 4-6). In the lower to middle reaches of the Waimea hydrologic unit, Awaous guamensis were fairly common in both 1994 and 2002 with similar densities. In 2002, S. hawaiiensis and S. stimpsoni were also fairly common. In all 1994 and 2002 surveys, A. bisulcata were absent, despite being observed in 1963. This may have been an artifact of sampling effort as the A. bisulcata 1963 observations were much farther upstream than either of the 1994 or 2002 sampling locations. Table 4-4 provides a summary of survey results for native aquatic species in the Waimea hydrologic unit. Given the presence of numerous native species below the waterfalls in the lower to middle reaches, restoration of flows are likely to benefit freshwater and estuarine species (Kido, 1996). **Table 4-4.** Number of sites surveyed with identified species and mean (standard deviation, s.d.) number of native aquatic species by survey year based on point-quadrat survey methods. (Source: State of Hawaii Division of Aquatic Resources, 2015) | | 1963 (n = 22) | | 1994 | 1994 (n = 152) | | 2002 (n = 173) | | |---------------------------|---------------|-------------|-------|----------------|-------|----------------|--| | | sites | Mean (s.d.) | sites | Mean (s.d.) | sites | Mean (s.d.) | | | Atyoida bisulcata | 11 | 1.00 (0.00) | 0 | | 0 | | | | Macrobrachium grandimanus | 0 | | 0 | | 3 | 1.67 (1.54) | | | Awaous guamensis | 7 | 1.00 (0.00) | 60 | 2.25 (2.03) | 61 | 2.84 (2.67) | | | Stenogobius hawaiiensis | 1 | 1.00 (0.00) | 0 | | 44 | 3.82 (3.43) | | | Eleotric sandwicensis | 1 | 1.00 | 0 | | 4 | 1.00 (0.00) | | | Sicyopterus stimpsoni | 9 | 1.00 (0.00) | 6 | 1.33 (0.82) | 19 | 2.21 (1.32) | | | Lentipes concolor | 0 | | 0 | | 0 | | | | Neritina granosa | 0 | | 0 | | 1 | 1.00 | | | Neritina vespertina | 0 | | 0 | | 1 | 2.00 | | **Figure 4-2.** Location of *Atyioda bisulcata* observations from 1963 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) **Figure 4-3.** Location of *Awaous stamineus* observations from 1963, 1994 and 2002 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) **Figure 4-4.** Location of *Stenogobius hawaiiensis* observations from 1963, 1994 and 2002 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) **Figure 4-5.** Location of *Sicyopterus stimpsoni* observations from 1963, 1994 and 2002 surveys in the Waimea hydrologic unit. (Source: State of Hawaii Division of Aquatic Resources, 2015) ### 5.0 Outdoor Recreational Activities Water-related recreation is an integral part of life in Hawaii. Though beaches may attract more users, the value of maintaining streamflow is important to sustaining recreational opportunities for residents and tourists alike. Streams are often utilized for water-based activities, such as boating, fishing, and swimming, while offering added value to land-based activities such as camping, hiking, and hunting. Growing attention to environmental issues worldwide has increased awareness of stream and watershed protection and expanded opportunities for the study of nature; however, this must be weighed in conjunction with the growth of the eco-tourism industry and the burdens that are placed on Hawaii's natural resources. The State of Hawaii Department of Health (DOH) maintains water quality standards (HAR 11-54) for recreational areas in inland recreational waters based on the geometric-mean of *Enterococcus spp.*, a fecal indicator: 33 colony-forming units per 100 mL of water or a single-sample maximum of 89 colonies per 100 mL. These standards are for full-body contact including swimming and if enterococci exceed those values, the water body is considered to be impaired. DOH also has a standing advisory for *Leptospirosis spp.* in all freshwater streams. The marine recreational zone, which extends from the shoreline seaward to 1,000 feet from shore, requires an enterococci geometric-mean of less than 7 colony-forming units per 100 mL of water, to protect human health. The recreational resources of Waimea hydrologic unit were classified as "outstanding" by the HSA's regional recreation committee, having extensive recreational opportunities, including camping, hiking, fishing, hunting, boating, parks, and scenic views (National Park Service, 1990). Due to the Waimea hydrologic unit's large size, there are many different hunting units that overlap the region. According to public hunting data, Hunting Unit B on the island of Kauai consists of state-owned portions of the Na Pali-Kona Forest Reserve and Puu Ka Pele Forest Reserve that lie east of Waimea Canyon State Park and Kokee State Park, west of the Alakai Wilderness Preserve, south of Mohihi Stream and north of Waialae Stream. Hunting Unit D consists of the portions of the Kokee State Park east of Kokee and Maluapopoki streams, south of the Kokee-Puu O Kila Road and west of the boundary between Kokee State Park, and the eastern portion of the Na Pali-Kona Forest Reserve, including lands known as the Kumuwela Ridge, Berry Flats, and Kahuamaa Flats. Hunting Unit E has two parts: the first consists of the Alakai-Waialae area of the Na Pali-Kona Forest Reserve east of Kokee State Park, northeast of Waimea Canyon State Park, and southwest of Wainiha Pali, including areas known as the Alakai Wilderness Preserve, Hanakapiai and Hanakoa stream drainages above three-thousand feet; the second consists of the Mokihana Ridge Game Management Area which
includes the Waimea Canyon State Park south of Waialae Stream, west of the boundary fence from Kalehuahakihaki along Mokihana Cart Road, and west of the pali which runs parallel and one-thousand feet to the east of Mokihana Stream to Waimea River and lands east of the six-hundred feet elevation contour between Waimea Ditch Intake and the Puu Ka Pele Forest Reserve Boundary. Hunting Unit F consists of lands within Waimea Canyon State Park south of Puu Ka Pele Forest Reserve, west of Hunting Unit E and north of the line due west of Waimea "Obake" Swinging Bridge, and east of Waimea Heights Road. Hunting Unit K consists of a strip of land extending one-half mile east of the Waimea Canyon State Park boundary, south of the Kaana Ridgeline and north of the Puu Ka Pele Forest Reserve Boundary. The portion the Waimea hydrologic unit in a hunting area is approximately 56.1285 square miles or 65.5 percent of the hydrologic unit (Figure 5-1). Starting in the 1960s, rainbow trout (*Onchorhynchus mykiss*) was introduced for sport fishing in a number of streams in Kokee State Park. During a multi-year survey, The Bishop Museum, in collaboration with the Smithsonian Institution, evaluated riparian vegetation, stream substrate and water quality with the hopes of determining if a sustainable wild rainbow trout catch and release fishery could be established and what a fishery would do to the native ecosystem (Englund et al. 2000). Only particular reaches are groundwater fed such that summer stream temperatures could support viable populations. Trout fed primarily on terrestrial invertebrates, there was no competition with native fishes (which are absent at high elevations), and few native aquatic invertebrates were consumed. Rainbow trout continue to exist in some stream reaches, although DAR does not actively maintina these populations. The Puu Lua Reservoir, which is maintained by water from the Kokee Ditch, continues to support an active trout fishery. Since changes to streamflow and stream configurations have raised concerns regarding their impact to onshore and near-shore activities, the Commission attempted to identify these various activities in relation to Waimea Stream. A 1981 Kauai Resource Atlas, prepared by the State of Hawaii Department of Transportation's Harbors Division, inventoried coral reefs and coastal recreational activities. Looking at available data, the Commission identified the following activities that were known to occur or observed at or near Waimea shore region: pole and line fishing, gill netting, and throw netting (Figure 5-3). **Figure 5-1.** Public hunting areas for game mammals in Wamea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2002b) **Figure 5-2.** Recreational and aesthetic points of interest as well as coastal resources for Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 1999, 2002c; 2004a) # 6.0 Maintenance of Ecosystems Basaltic Soil An ecosystem can be generally defined as the complex interrelationships of living (biotic) organisms and nonliving (abiotic) environmental components functioning as a particular ecological unit. Depending upon consideration of scale, there may be a number of ecosystem types that occur along a given stream such as estuaries, wetlands, and stream vegetation, according to the State Water Code. Figure 6-1 provides a simplified ecosystem represented in a Hawaiian stream. The entire hydrologic unit, as it relates to hydrologic functions of the stream, could also be considered an ecosystem in a very broad context. The HSA determined that Waimea Stream deserved to be a candidate stream for protection based on both its Diversity of Resources scoring (outstanding riparian, cultural, and recreational resources) and its Blue Ribbon Resources scoring (outstanding riparian and recreational resources). Detrimental organisms (non-native species that have a negative effect on the ecosystem) were not considered in the final ranking; however their presence and abundance are considerable ecosystem variables. The destruction to both vegetation and soil resources in the Waimea hydrologic unit by ungulates is considered a major factor in alterations to the hydrology and water quality of the stream. 0 **DECOMPOSERS ABIOTIC PRODUCERS** CONSUMERS PRIMARY SECONDARY TERTIARY Wandering Tattle Red-tailed Goby wned Night Sedges Protozoans Stream Limpet Heron Water Dissolved Gasses and Nutrients Clinging Stream Goby Chironomid Sleeper Goby Damselfly Najads Pondweeds Diatoms Figure 6-1. Simplified ecosystem illustrated in a Hawaiian stream. (Source: Ziegler, 2002, illustration by Keith Kruger). The Hawaiian resource-use concept of ahupuaa is closely related to the Western concepts of ecosystem maintenance. Native Hawaiians generally utilized natural resources within the limits of their ahupuaa; therefore, it was important to manage and conserve these resources. Likewise, watershed resources must be properly managed and conserved to sustain the health of the stream and the instream uses that are dependent upon it. Fly Larvae The riparian resources of Waimea Stream were classified by the HSA (National Park Service, Hawaii Cooperative Park Service Unit, 1990) and ranked according to a scoring system using six of the seven variables (Table 6-1). Table 6-1. Hawaii Stream Assessment indicators of riparian resources for Waimea hydrologic unit. | Category | Value | |--|---| | Listed threatened and endangered species: These species are generally dependent upon undisturbed habitat. Their presence is, therefore an indication of the integrity of the native vegetation. The presence of these species along a stream course was considered to be a positive attribute; with the more types of threatened and endangered species associated with a stream the higher the value of the resource. Only federally listed threatened or endangered forest or water birds that have been extensively documented within the last 15 years were included. | 9 | | Recovery habitat: Recovery habitat consists of those areas identified by the USFWS and DLNR as essential habitat for the recovery of threatened and endangered species. Streams that have recovery habitat anywhere along their length were included. | None | | Other rare organisms and communities: Many species that are candidates for endangered or threatened status have not been processed through all of the requirements of the Endangered Species Act. Also a number of plant communities associated with streams have become extremely rare. These rare organisms and communities were considered to be as indicative of natural Hawaiian biological processes as are listed threatened and endangered species. | 17 | | Protected areas: The riparian resources of streams that pass through natural area reserves, refuges and other protected areas are accorded special protection from degradation. Protected areas were so designated because of features other than their riparian resources. The presence of these areas along a stream, however, indicates that native processes are promoted and alien influences controlled. | None | | Wetlands: Wetlands are important riparian resources. They provide habitat for many species and are often important nursery areas. Because they are often extensive areas of flat land generally with deep soil, many have been drained and converted to agricultural or urban uses. Those that remain are, therefore, invaluable as well as being indicators of lack of disturbance. | W+
(over ½ square mile of
Palustrine wetland) | | Native forest: The proportion of a stream course flowing through native forest provides an indication of the potential "naturalness" of the quality of a stream's watershed; the greater the percentage of a stream flowing through native forest most of which is protected in forest reserves the more significant the resource. Only the length of the main course of a stream (to the nearest 10 percent) that passes through native forest was recorded. | 20% | | Detrimental organisms: Some animals and plants have a negative influence on streams. Wild animals (e.g., pigs, goats, deer) destroy vegetation, open forests, accelerate soil erosion, and contaminate the water with fecal material. Weedy plants can dramatically alter the nature of a stream generally by impeding water flow. Three species, California grass, hau, and red mangrove, are considered to have the greatest influence. The presence of any of these animals or plants along a stream course was considered a potentially negative factor, while the degree of detriment is dependent on the number of species present. | 3
(Pigs, Goats,
Black-tailed Deer) | For the purpose of this section, management areas are those locales that have been identified by federal, state, county, or private entities as having natural or cultural resources of particular value. The result of various government programs and privately-funded initiatives has been a wide assortment of management areas. Such designated areas include forest reserves, private preserves, natural area reserves, wildlife sanctuaries, national parks, and historic landmarks. In Waimea, over 65 percent of the hydrologic unit falls within either forest reserves or state parks (Table 6-2). **Table 6-2.** Management areas located within Waimea hydrologic unit.
(Source: State of Hawaii, Division of Forestry and Wildlife, 2008a). | Management Area | Managed by | Area (mi²) | Percent of
Unit | |--|---|------------|--------------------| | Puu Ka Pele Forest Reserve- Canvon Section | State Division of Forestry and Wildlife | 21.815 | 25.4 | The Puu Ka Pele Forest Reserve is one of nine reserves on the Island of Kauai that are managed by the State Department of Land and Natural Resources (DLNR)'s Division of Forestry and Wildlife. These reserves are established as multi-use land areas that incorporate various, and often competing, public uses and benefits. The management goals of the Forest Reserve System include: 1) Protect and manage forested watersheds for production of fresh water supply for public uses now and into the future; 2) Maintain biological integrity of native ecosystems; 3) Provide public recreational opportunities; and 4) Strengthen the economy by assisting in the production of high quality forest products in support of a sustainable forest industry. The primary goals of reserve are to manage the lands for sustainable game hunting, protect existing rare native biological resources and provide native and non-native timber resources. Na Pali-Kona Forest Reserve-Alakai Wilderness Preserve Section State Division of Forestry and Wildlife 15.325 17.9 The Alakai Wilderness Preserve section of the Na Pali-Kona Forest Reserve is one of nine reserves on the Island of Kauai that is managed by the State Department of Land and Natural Resources (DLNR)'s Division of Forestry and Wildlife. Infrastructure consists of a few rough roads, trails and many picnic and/or basic campsites. These reserves are established as multi-use land areas that incorporate various, and often competing, public uses and benefits. The management goals of the Forest Reserve System include: 1) Protect and manage forested watersheds for production of fresh water supply for public uses now and into the future; 2) Maintain biological integrity of native ecosystems; 3) Provide public recreational opportunities; and 4) Strengthen the economy by assisting in the production of high quality forest products in support of a sustainable forest industry. Na Pali-Kona Forest Reserve-Kokee Section State Division of Forestry and Wildlife 13.282 15.5 The Kokee section of the Na Pali-Kona Forest Reserve is one of nine reserves on the Island of Kauai that is managed by the State Department of Land and Natural Resources (DLNR)'s Division of Forestry and Wildlife. Infrastructure consists of a few rough roads, trails and many picnic and/or basic campsites. These reserves are established as multi-use land areas that incorporate various, and often competing, public uses and benefits. The management goals of the Forest Reserve System include: 1) Protect and manage forested watersheds for production of fresh water supply for public uses now and into the future; 2) Maintain biological integrity of native ecosystems; 3) Provide public recreational opportunities; and 4) Strengthen the economy by assisting in the production of high quality forest products in support of a sustainable forest industry. Public hunting is permitted for birds and mammals in this section Kokee State Park State Parks Divsion 4.660 5.4 Kokee State Park is managed by the State Parks Division of the State Department of Land and Natural Resources (DLNR), just north of Waimea Canyon State Park on the western side of the Waimea hydrologic unit. The park consists of a lodge and visitor center, cabins for rent, and numerous hiking trails. Seasonal plum picking, trout fishing, and pig hunting are available in some areas. Hono O Na Pali Natural Area Reserve State Division of Forestry and Wildlife 0.737 0.8 An extension was added to the Hono O Na Pali Natural Area Reserve managed by the State Department of Land and Natural Resources (DLNR)'s Division of Forestry and Wildlife located in the Waimea hydrologic unit northwest of Kokee State Park. This reserve protects intact native wet forest with several rare and endangered pants and animals. The area is accessible by a couple of trails. Waimea Canyon State Park State Parks Divsion 0.272 0.3 Waimea Canyon State Park is managed by the State Parks Division of the State Department of Land and Natural Resources (DLNR), on the western side of the Waimea hydrologic unit. The park consists of a lookout with restrooms and two trails along with seasonal trout fishing (in Puu Lua Reservoir) and hunting. Russian Fort Elizabeth State Historical Park National Park Service 0.030 < 0.1 The historical park is managed by the National Park service as a reminder of the brief Russian presence in Hawaii. The park consists of the remains of the original fort constructed in 1817. In addition to the individual management areas outlined above, Watershed Partnerships are another valuable component of ecosystem maintenance. Watershed Partnerships are voluntary alliances between public and private landowners who are committed to responsible management, protection, and enhancement of their forested watershed lands. There are currently nine partnerships established statewide, one of which is on Kauai. Table 6-3 provides a summary of the partnership area, partners, and management goals of the Kauai Watershed Alliance. **Table 6-3.** Watershed partnerships associated with the Waimea hydrologic unit. (Source: State of Hawaii, Division of Forestry and Wildlife, 2008b) | Management Area | Year Established | Total Area (mi²) | Area (mi²) | Percent of Unit | |--------------------------|------------------|------------------|------------|-----------------| | Kauai Watershed Alliance | 2003 | 225 | 59.65 | 69.6 | The Kauai Watershed Alliance (KWA) is comprised of the County of Kauai, Hawaii State Department of Land and Natural Resources (Division of Forestry and Wildlife, Division of State Parks, Land Management Division), McBryde Sugar Company Ltd., Grove Farm Company, Lihue Land Company, Kealia Ranch LLC, B.A. Dyer, Princeville Development LLC, Kamehameha Schools, and The Nature Conservancy. The management priorities of the KWA include: 1) Watershed resource monitoring; 2) Animal control; 3) Weed control; 4) Management infrastructure; and 5) Public education and awareness programs. The EMWP has conducted various projects including the construction of over seven miles of fence construction and on-going fence maintenance, the survey and removal of invasive plant species, eradication of animal species through an expanded hunting program, implementation of runoff and stream protection measures, water quality monitoring, and extensive public education and outreach campaigns. In 1974, the U.S. Fish and Wildlife Service (USFWS) initiated a National Wetlands Inventory that was considerably broader in scope than an earlier 1954 inventory that had focused solely on valuable waterfowl habitat. The inventory for Hawaii was completed in 1978 and utilized a hierarchical structure in the classification of various lands. The USFWS defines wetlands as "lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface or the land is covered by shallow water" (Cowardin et al., 1979). Nearly 11 percent of the Wiamea Hydrologic Unit is classified as seasonal, non-tidal palustrine wetlands occurring in the headwaters of the hydrologic unit (Table 6-4 and Figure 6-2). Palustrine wetlands are nontidal wetlands dominated by trees, shrubs, persistent emergents, emergent mosses or lichens, or wetlands that occur in tidal areas where salinity due to ocean-derived salts is below 0.5 percent. Table 6-4. Wetland classifications for Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015n) | System Type | Class | Regime | Area (mi²) | Percent of Unit | |-------------|-----------------------------------|--------------------|------------|-----------------| | Palustrine | Estuarine and Marine Wetland | Seasonal non-tidal | 0.001 | < 0.01 | | Palustrine | Freshwater Pond | Seasonal non-tidal | 0.007 | 0.01 | | Palustrine | Freshwater Emergent Wetland | Seasonal non-tidal | 0.366 | 0.43 | | Palustrine | Riverine | Seasonal non-tidal | 1.384 | 1.61 | | Palustrine | Freshwater Forested/Shrub Wetland | Seasonal non-tidal | 7.542 | 8.80 | A series of vegetation maps describing upland plant communities was prepared as part of a USFWS survey in 1976 to 1981 to determine the status of native forest birds and their associated habitats. Table 6-5 and Figure 6-3 present the degree of disturbance of native forest. Nearly a half of the unit is dominated by introduced species, while almost 40 percent of the unit is dominated by native species. **Table 6-5.** Distribution of native and alien plant species for Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015f) | Canopy Type | Area (mi²) | Percent of Unit | |--|------------|-----------------| | Communities totally dominated by native species of plants | 33.354 | 38.96 | | Communities that are totally dominated by introduced plants; virtually no native species remaining | 37.517 | 43.82 | The density of threatened and endangered plant species is high at elevations above 1,200 feet, resulting in the majority of the Waimea hydrologic unit, roughly 54 percent, covered in a high density of threatened and endangered plant species (Table 6-6). **Table 6-6.** Density of threatened and endangered plants for Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015i) | Density | Area (mi²) | Percent of Unit | |--|------------|-----------------| | Very High concentration of threatened and endangered species | 8.393 | 9.80 | | High concentration of threatened and endangered species | 46.357 | 54.13 | | Medium
concentration of threatened and endangered species | 19.650 | 22.95 | | Low concentration of threatened and endangered species | 7.468 | 8.72 | A working paper is being developed by the University of Hawaii's Economic Research Organization (UHERO), entitled *Environmental Valuation and the Hawaiian Economy*, which discusses the use of existing measures of economic performance and alternative statistical devices to provide an economic valuation of threatened environmental resources. The paper focuses on the Koolau, Oahu watershed and illustrates three categories of positive natural capital (forest resources, shoreline resources, and water resources) against a fourth category (alien species) that degrades natural capital. In the case of the Oahu Koolau forests, a benchmark level of degradation is first defined for comparison against the current value of the Oahu Koolau system. The Oahu Koolau case study considers a hypothetical major disturbance caused by a substantial increased population of pigs with a major forest conversion from native trees to the non-indigenous Miconia (*Miconia calvescens*), along with the continued "creep" of urban areas into the upper watershed (Kaiser, B. et al., n.d.). Recognizing that in the United States, the incorporation of environmental and natural resource considerations into economic measures is still very limited, the paper provides the estimated Net Present Value (NPV) for "Koolau [Oahu] Forest Amenities." These values are presented in Table 6-7. Table 6-7. Estimated Net Present Value (NPV) for Koolau [Oahu] Forest Amenities. (Source: Kaiser, B. et al., n.d.) | Amenity | Estimated Net Present Value (NPV) | Important limitations | |------------------------------------|-----------------------------------|--| | Ground water quantity | \$4.57 to \$8.52 billion NPV | Optimal extraction assumed. | | Water quality | \$83.7 to \$394 million NPV | Using averted dredging cost estimates. | | In-stream uses | \$82.4 to \$242.4 million NPV | Contingent valuation estimate for a single small fish species. | | Species habitat | \$487 to \$1,434 million NPV | Contingent valuation estimate for a single small bird species. | | Biodiversity | \$660,000 to \$5.5 million NPV | Average cost of listing 11 species in Koolaus. | | Subsistence | \$34.7 to \$131 million NPV | Based on replacement value of pigs hunted. | | Hunting | \$62.8 to \$237 million NPV | Based on fraction of hunting expenditures in state. Does not include damages from pigs to the other amenities. | | Aesthetic values | \$1.04 to \$3.07 million NPV | Contingent valuation; Households value open space for aesthetic reasons. | | Commercial harvests | \$600,000 to \$2.4 million NPV | Based on small sustainable extraction of koa. | | Ecotourism | \$1.0 to \$2.98 billion NPV | Based on fraction of direct revenues to ecotourism activities. | | Climate control | \$82.2 million | Based on replacement costs of contribution of all tropical forests to carbon sequestration. | | Estimated value of joint services: | \$7.444 to \$14.032 billion | | Following upon the results of the Oahu Koolau case study, the paper provides a brief comparison with the Kauai forests, noting the particular importance of the Waimea watershed as habitat for threatened and endangered species. In both the Oahu Koolaus and Waimea, some of the most valuable aspects of the forested areas are believed to be ecotourism, aesthetic pleasure, species habitat, water quality, and water quantity. Both regions are roughly the same size; however, the Waimea forests may have greater value due to greater species diversity and native habitat. Certain areas of Waimea provide some of the last remaining critical habitat for native forest birds and insects in Hawaii. Figure 6-2. Reserves and wetlands for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2007b; 2015n) **Figure 6-3.** Distribution of native and alien plant species, and critical habitat for plant and bird species in the Waimea hydrologic unit. (Source: Scott et al., 1986; State of Hawaii, Office of Planning, 1996; 2004b) **Figure 6-4.** Density of threatened and endangered plants in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015h) #### 7.0 Aesthetic Values Aesthetics is a multi-sensory experience related to an individual's perception of beauty. Since aesthetics by definition is a subjective observation, a stream's aesthetic value cannot be determined quantitatively (Wilson Okamoto & Associates, Inc., 1983). However, there are certain elements, either within or surrounding a stream, which appeal to an observer's visual and auditory senses, such as waterfalls and cascading plunge pools. Visitors and residents can identify a point that has aesthetic value and continue to return to such a point to gain that value. Such points can potentially be identified, as maped in Figure 5-2. However, the points listed are not exhaustive and it is beyond the scope of this report to list all potential aesthetic values. The headwaters of Waimea Stream originate in the Alakai Marsh, a unique ecological region of the Na Pali-Kona Forest Reserve and the Alakai Wilderness. This region is home to endemic and endangered birds and insects. The Waimea Canyon, a steeply cut gulch that traverses almost the entirety of the watershed, can be viewed from many points along the Hawaii State highway 550 as well as the numerous trails that crisscross the region. The Kokee Stream is the source of the Waipoo falls, an 800 ft waterfall that is a popular photographic target. The Waimea Canyon is popular with helicopter tours partially because of the waterfalls and streams that flow through the hydrologic unit. Waimea Stream empties into the Pacfic Ocean near the town of Waimea, which can be viewed from the Russian Fort Elizabeth State Historical Park or Lucy Wright Park. Waimea State Recreation Pier and associated beaches are also popular recreational areas in Waimea town. In a 2007 Hawaii State Parks Survey, released by the Hawaii Tourism Authority (OmniTrak Group Inc., 2007), scenic views accounted for 21 percent of park visits statewide, though that was a decrease from 25 percent in a 2003 survey. Other aesthetic-related motivations include viewing famous landmarks (9 percent), hiking trails and walks (7 percent), guided tour stops (6 percent), and viewing of flora and fauna (2 percent). On the island of Kauai, out-of-state visitors' most common reasons to visit state parks for scenic views (28 percent) were tied with outings with family and friends (28 percent). Similarly, residents primarily used state parks in Kauai for outings with family and friends (42 percent) followed by scenic views (16 percent). Overall, Kauai residents were very satisfied with scenic views giving a score of 8.9 (on a scale of 1 to 10, with 10 being outstanding), with out-of-state visitors giving a score of 9.2. Waimea Canyon State Park is one of the most popular parks in the state with 430,700 visitors in 2007, 85 percent of which were out-of-state. Additionally, 303,900 people visited Kokee State Park with approximately 87 percent of visitors from out-of-state. The primary reson behind tourist visits to Kauai are for nature and scenery (71 percent) and relaxation (67 percent). ## 8.0 Navigation The State Water Code, Chapter 174C, HRS, includes navigation as one of nine identified instream uses; however, it fails to further define navigation. Navigational water use is largely defined as water utilized for commercial, and sometimes recreational, transportation. In the continental United States, this includes water used to lift a vessel in a lock or to maintain a navigable channel level. Under the provisions of the Clean Water Act, navigable waters also include wetlands (State of Nevada, Department of Conservation and Natural Resources, Division of Water Resources, n.d.). Hawaii streams are generally too short and steep to support navigable uses. If recreational boating (primarily kayaks and small boats) is included under the definition of navigation, then there are only a handful of streams statewide that actually support recreational boating and even fewer that support commercial boating operations. Kauai's Wailua River is the only fresh water waterway where large boat commercial operations exist, and no streams are believed to serve as a means for the commercial transportation of goods. Outrigger boating has historically used the lowest portion of the Waimea River and this is considered the only instream use of navigation. ## 9.0 Instream Hydropower Generation The generation of hydropower is typically accomplished through instream dams and power generators. However, the relatively short lengths and flashy nature of Hawaii's streams often require water to be diverted to offstream power generators. In these "run-of-river" (i.e., utilizes water flow without dams or reservoirs) designs, water is diverted through a series of tunnels, ditches, and pipes, and then through a penstock to the powerplant, finally returning to the stream. Some designs call for the powerplant to be situated such that the drop of water level (head) exiting the plant can be sent to fields for crop irrigation. There are three hydropower plants connected with water from the Waimea hydrologic unit: the Mauka (Waimea) hydropower plant and the Waiawa hydropower plant on the Kekaha irrigation system and the Makaweli hydropower plant on the Olokele irrigation system. Only the Waimea and Makaweli hydropower plants are considered instream hydropower generation. The Waiawa hydropower plant was initially constructed in 1907 by the Kekaha Sugar Company but ditch seepage loss and increased demand for power to pump water to the mauka lands required additional water and energy. In 1912, the Mauka powerhouse was constructed at the site of the original Kekaha ditch
diversion on Waimea River and additional diversions at Koaie and Waihulu were constructed to feed the ditch and powerhouse (Wilox, 1996). Kekaha Agriculture Association currently operates these hydropower plants using water diverted by the Koaie and Waiahulu diversions. Since some of the water diverted for hydropower generation at the Mauka powerhouse is removed from the hydrologic unit and all of the water passing through the Waiawa powerhouse then supports agricultural irrigation, not all of the hydropower is considered instream hydropower generation, and more information is therefore found in the non-instream use section. Not all the water diverted into the Kekaha Ditch is needed for irrigation past the mauka hydropower plant, and some of it is returned to the stream. Recent water usage for hydropower production and the associated energy production are provided in Figure 13-6 and Figure 13-7. This volume cannot currently be quantified except for the total amount of water flowning in the stream at the USGS gaging station located at an elevation of 20 ft (station #16031000). Currently, energy generated by the hydropower plants are used by the Kekaha Agriculture Association lessees. Excess power not used by KAA is sold to KIUC via a power purchase agreement. Profits from this sale are put into capital improvements, including ditch maintenance and construction, road and electrical line repair, and irrigation infrastructure. The low cost of power provided by hydropower from the Waimea hydrologic unit keeps leases on the Mana plain low for agriculture. Gay & Robinson operate the Makaweli hydropower plant. The original plant was a 1.3 MW plant built in 1904, but by 2019, this plant will be upgraded to a 6.6 MW plant. Energy produced from this plant is sold to KIUC. ## 10.0 Maintenance of Water Quality Water quality is important due to its direct impact on other instream uses such as fish and wildlife habitat, outdoor recreation, ecosystems, aesthetics, and traditional and customary Hawaiian rights. There are several factors that affect a stream's water quality, including physical, chemical, and biological attributes. The State of Hawaii Department of Health (DOH) is responsible for water quality management duties statewide. The DOH Environmental Health Administration oversees the collection, assessment, and reporting of numerous water quality parameters in three high-priority categories: - Possible presence of water-borne human pathogens; - Long-term physical, chemical and biological components of inland, coastal, and oceanic waters; and - Watershed use-attainment assessments, identification of sources of contamination, allocation of those contributing sources, and implementation of pollution control actions. The Environmental Health Administration is also responsible for regulating discharges into State waters, through permits and enforcement actions. Examples include federal National Pollutant Discharge Elimination System (NPDES) permits for storm water, and discharge of treated effluent from wastewater treatment plants into the ocean or injection wells. Sediment and temperature are among the primary physical constituents of water quality evaluations and they are directly impacted by the amount of water in a stream. The reduction of streamflow often results in increased water temperatures, whereas higher flows can aid in quickly diluting stream contamination events. According to the Instream Flow Council, "[w]ater temperature is one of the most important environmental factors in flowing water, affecting all forms of aquatic life (Amear et al, 2004)." While this statement is true for continental rivers, fish in Hawaii are less sensitive to fluctuations in water temperature and more dependent on flowing water. Surface water temperatures may fluctuate in response to seasonal and diurnal variations, but only a few degrees Celsius in natural streams, mainly because streams in Hawaii are so short. However, temperatures in streams with concrete-lined channels, and water temperature in dewatered reaches may fluctuate widely due to the vertical solar contact. Surface water temperatures may also fluctuate widely due to water column depth, channel substrate, presence of riparian vegetation, and ground water influx. Surface water also differs considerably from ground water, generally exhibiting lower concentrations of total dissolved solids, chlorides, and other major ions, along with higher concentrations of suspended solids, turbidity, microorganisms, and organic forms of nutrients (Lau and Mink, 2006). Findings of a 2004 USGS National Water Quality Assessment (NAWQA) Program report identified land use, storm-related runoff, and ground water inflow as major contributors of surface water contaminants (Anthony et al., 2004). Runoff transports large amounts of sediment from bare soil into surface water bodies, with consequences for in-stream and near-shore environments. Based on landscape modeling, the Waimea hydrologic unit generates 12,300 tons of sediment per year (Kim Falinski, pers. Comm.). Areas with more exposed soil, tend to generate higher quantities of sediment (Figure 10-1). There are three types of water bodies: freshwater, marine, or brackish. They can be further delineated as inland fresh waters, estuaries, embayments, open coastal waters, and oceanic waters (HAR 11-54-5 to 11-54-6). Each water body type has its own numeric criteria for State of Hawaii Water Quality Standards (WQS). **Figure 10-1.** Modeled annual sediment export from sub-catchments in the Waimea hydrologic unit. (Source: Kim Falinski, *pers. comm.*) Fresh waters are classified for regulatory purposes, according to the adjacent land's conservation zoning. There are two classes for the inland fresh waters. Class 1 inland waters are protected to "remain in their natural state as nearly as possible with an absolute minimum of pollution from any human-caused source." These waters are used for a number of purposes including domestic water supply, protection of native breeding stock, and baseline references from which human-caused changes can be measured. Class 2 inland waters are protected for uses such as recreational purposes, support of aquatic life, and agricultural water supplies. Class 1 waters are further separated into Classes 1a and 1b. Class 1a waters are protected for the following uses: scientific and educational purposes, protection of native breeding stock, baseline references from which human-caused changes can be measured, compatible recreation, aesthetic enjoyment, and other non-degrading uses which are compatible with the protection of the ecosystems associated with waters of this class. Streams that run through natural reserves, preserves, sanctuaries, refuges, national and state parks, and state or federal fish and wildlife refuges are Class 1a. Streams adjacent to the most environmentally sensitive conservation subzone, "protective," are Class 1b, and are protected for the same uses as Class 1a waters, with the addition of domestic water supplies, food processing, and the support and propagation of aquatic life (HAR 11-54-3). These classifications are used for regulatory purposes, restricting what is permitted on the land around receiving waters. For example, public access to Class 1b waters may be restricted to protect drinking water supplies. Land use affects water quality because direct runoff (rainfall that flows overland into the stream) can transport sediment, bacteruam and chemical contaminants into the stream. According to the U.S. Environmental Protection Agency (USEPA), "[a] TMDL or Total Maximum Daily Load is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. Water quality standards are set by States, Territories, and Tribes. They identify the uses for each waterbody, for example, drinking water supply, contact recreation (swimming), and aquatic life support (fishing as well as ecological health), and the scientific criteria required to support those uses. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. The calculation must include a margin of safety to ensure that the waterbody can be used for the purposes the State has designated. The calculation must also account for seasonal variation in water quality. The Clean Water Act, section 303, establishes the water quality standards and TMDL programs (USEPA, 2008)." The DOH, Environmental Health Administration maintains the State of Hawaii Water Quality Standards (WQS), a requirement under the Federal Clean Water Act (CWA) regulated by the EPA. The CWA aims to keep waters safe for plants and animals to live and people to wade, swim, and fish. Water Quality Standards are the measures that states use to ensure protection of the physical, chemical, and biological health of their waters. "A water quality standard defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made of the water and by setting criteria necessary to protect the uses (CWA §131.2)." Each state specifies its own water uses to be achieved and protected ("designated uses"), but CWA §131.10 specifically protects "existing uses", which it defines as "...those uses actually attained in the water body on or after November 28, 1975, whether or not they are included in the water quality standards (CWA §131.3)." Although the State WQS do not specify any designated uses in terms of traditional and customary Hawaiian rights, the "protection of native breeding stock," "aesthetic enjoyment," and "compatible recreation" are among the designated uses of Class 1 inland waters, and "recreational purposes, the support and propagation of aquatic life, and agricultural and industrial water supplies" are among the designated uses of Class 2 inland waters. This means that uses tied to
the exercise of traditional and customary Hawaiian rights that are protected by the State Constitution and the State Water Code (Section 12.0, Protection of Traditional and Customary Hawaiian Rights), including but not limited to gathering, recreation, healing, and religious practices are also protected under the CWA and the WQS as designated and/or existing uses. Therefore, the Commission's interim IFS recommendation may impact the attainment of designated and existing uses, water quality criteria, and the DOH antidegradation policy, which together define the WOS and are part of the joint Commission and DOH obligation to assure sufficient water quality for instream and noninstream uses. State of Hawaii WQS define: 1) the classification system for State surface waters, which assigns different protected uses to different water classes; 2) the specific numeric or narrative water quality criteria needed to protect that use; and 3) a general antidegradation policy, which maintains and protects water quality for the uses defined for a class. Quantitative and qualitative data are utilized. Numeric water quality criteria ¹ Existing uses as defined in the CWA should not be confused with existing uses as defined in the State Water Code, although there is some overlap and linkage between the two. Under the Water Code, if there are serious threats to or disputes over water resources, the Commission may designate a "water management area." Water quality impairments, including threats to CWA existing uses, are factors that the Commission may consider in its designation decisions. Once such a management area is designated, people who are already diverting water at the time of designation may apply for water use permits for their "existing uses." The Commission then must weigh if the existing use is "reasonable and beneficial." The Water Code defines "reasonable-beneficial use" as "the use of water in such a quantity as is necessary for economic and efficient utilization, for a purpose, and in a manner which is both reasonable and consistent with the state and county land use plans and the public interest." The relationships between a Commission existing use and a CWA existing use can help determine the appropriateness of the use and its consistency with the public interest. have specific concentrations (levels of pollutants) that must be attained based on water body type, e.g. fresh water stream. Qualitative standards are general narrative statements that are applicable to all State waters, such as "all waters shall be free of substances attributable to domestic, industrial, or other controllable sources of pollutants (State of Hawaii, Department of Health, 2004)." Conventional pollutants include nutrients and sediments. Toxic pollutants include pesticides and heavy metals. Indicator bacteria are utilized to assess bacterial levels. Biological assessments of aquatic communities are also included in the data collected. Once data are gathered and evaluated for quality and deemed to be representative of the waterbody segment, a decision is made as to whether the appropriate designated uses are being attained. This set of decisions are then tabulated into a report to the EPA that integrates two CWA sections; (§) 305(b) and §303(d). This Integrated Report is federally required every even-numbered year. CWA §305(b) requires states to describe the overall water quality statewide. They must also describe the extent to which water quality provides for the protection and propagation of a balanced population of shellfish, fish, and wildlife and allows recreational activities in and on the water. Additionally, they determine whether the designated uses of a water body segment are being attained, and if not, what are the potential causes and sources of pollution. The CWA §303(d) requires states to submit a list of Water-Quality Limited Segments, which are waters that do not meet state water quality standards and those waters' associated uses. States must also provide a priority ranking of waters listed for implementation of pollution controls, which are prioritized based on the severity of pollution and the uses of the waters. In sum, the §303(d) list leads to action. The sources for the 2012 Integrated Report are Hawaii's 2010 §303(d) list, plus readily-available data collected from any State water bodies over the preceding 6 years (State of Hawaii, Department of Health, 2007). Per §303(d), impaired waters are listed after review of "all existing and readily available water quality-related data and information' from a broad set of data sources" (State of Hawaii, Department of Health, 2004, p.57). However, available data are not comprehensive of all the streams in the State. According to the Hawaii Administrative Rules Title 11 Chapter 54 (HAR 11-54) all State waters are subject to monitoring; however, in the most recent list published (from the 2010 list that was published in 2012), only 88 streams statewide had sufficient data for evaluation of whether exceedence of WQS occurred. Waimea Stream did not appear on the 2012 List of Impaired Waters in Hawaii, Clean Water Act §303(d). However, the Waimea Recreation Pear State Park was newly listed as impaired based on *Enterococci*. While some data exist for Waimea, there were not sufficient data for decision-making; therefore, no decision was made pertaining to the attainment of WQS or the applicable designated uses. The 2006 Integrated Report indicates that the current WQS require the use of *Enterococci* as the indicator bacteria for evaluating public health risks in the waters of the State; however, no new data were available for this parameter in inland waters. As mentioned in Section 5.0, Outdoor Recreational Activities, DOH maintains WQS for inland recreational waters based on the geo-mean statistic of *Enterococci*: 33 colony-forming units per 100 mL of water or a single-sample maximum of 89 colonies per 100 mL. This is for full-body contact (swimming, jumping off cliffs into waterfall pools, etc.). If *Enterococci* count exceeds those values, the water body is considered to be impaired. DOH Clean Water Branch efforts have been focused on coastal areas (State of Hawaii, Department of Health, 2006, Chapter II, p.20). The marine recreational zone, which extends from the shoreline seaward to 1,000 feet from shore, requires an *Enterococci* geo-mean of less than 7 colony-forming units per 100 mL of water to protect human health (HAR 11-54-8). The 2012 Integrated Report also states: "Public health concerns may be underreported. *Leptospirosis* is not included as a specific water quality standard parameter. However, all fresh waters within the state are considered potential sources of *Leptospirosis* infection by the epidemiology section of the Hawaii State Department of Health. No direct tests have been approved or utilized to ascertain the extent of the public health threat through water sampling. Epidemiologic evidence has linked several illness outbreaks to contact with fresh water, leading authorities to issue blanket advisories for all fresh waters of the state (State of Hawaii, Department of Health, 2007, Chapter II, p.3)." Waimea Stream is classified as Class 1a inland waters from its headwaters to approximately its confluence with Makaweli Stream as the surrounding land is in the conservation subzone "protective." The headwaters of the Makaweli Stream is classified as Class 1b inland waters, while the majority of the downstream reaches of the Makaweli Stream are not classified. It should be noted that the conservation subzone map utilized for this interpretation is general and elevations are not exact. It should also be noted that there is no direct relationship between elevation and attainment of water quality standards. Marine water body types are delineated by depth and coastal topography. Open coastal waters are classified for protection purposes from the shoreline at mean sea level laterally to where the depth reaches 100 fathoms (600 feet). Marine water classifications are based on marine conservation areas. The objective of Class AA waters is that they "remain in their natural pristine state as nearly as possible with an absolute minimum of pollution or alteration of water quality from any human-caused source or actions." Class A waters are protected for recreational purposes and aesthetic enjoyment; and protection of fish, shellfish, and wildlife. Discharge into these waters is permitted under regulation. The marine waters at the mouth of the Waimea hydrologic unit are mostly Class A waters. Figure 10-2 shows the Waimea hydrologic unit, including inland and marine (coastal) water classifications. **Figure 10-2.** Water quality standards for the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015e; 2008). The classifications are general in nature and should be used in conjunction with Hawaii Administrative Rules, Chapter 11-54, Water Quality Standards. ## 11.0 Conveyance of Irrigation and Domestic Water Supplies Under the State Water Code, the conveyance of irrigation and domestic water supplies to downstream points of diversion is included as one of nine listed instream uses. The thought of a stream as a conveyance mechanism for noninstream purposes almost seems contrary to the concept of instream flow standards. However, the inclusion of this instream use is intended to ensure the availability of water to all those who may have a legally protected right to the water flowing in a stream. Of particular importance in this section is the diversion of surface water for domestic purposes. In its August 2000 decision on the Waiahole Ditch Combined Contested Case Hearing, the Hawaii Supreme Court identified domestic water use of the general public, particularly drinking water, as one of, ultimately, four trust purposes. Neither the State nor the County keeps a comprehensive database of households whose domestic water supply is not part of a municipal
system (i.e. who use stream and / or catchment water). The County of Kauai Department of Water Supply does not have data for water users who are not on the county system and may be using catchment or surface water for domestic use. The State of Hawaii Department of Health Safe Drinking Water Branch administers Federal and State safe drinking water regulations to public water systems in the State of Hawaii to assure that the water served by these systems meets State and Federal standards. Any system which services 25 or more people for a minimum of 60 days per year or has at least 15 service connections is subject to these standards and regulations. Once a system is regulated by the Safe Drinking Water Branch, the water must undergo an approved filtration and disinfection process when it has been removed from the stream. It would also be subject to regulatory monitoring. However, there are no private water systems in the Waimea hydrologic unit regulated by the DOH, Safe Drinking Water branch. ## 12.0 Protection of Traditional and Customary Hawaiian Rights The maintenance of instream flows is important to the protection of traditional and customary Hawaiian rights, as they relate to the maintenance of stream resources (e.g., hihiwai, opae, oopu) for gathering, recreation, and the cultivation of taro. Article XII, Section 7 of the State Constitution addresses traditional and customary rights: "The State reaffirms and shall protect all rights, customarily and traditionally exercised for subsistence, cultural and religious purposes and possessed by ahupua'a tenants who are descendants of native Hawaiians who inhabited the Hawaiian Islands prior to 1778, subject to the right of the State to regulate such rights." Case notes listed in this section indicate, "Native Hawaiian rights protected by this section may extend beyond the ahupua'a in which a native Hawaiian resides where such rights have been customarily and traditionally exercised in this manner. 73 H.578, 837 P.2d 1247." It is difficult to fully represent in words the depth of the cultural aspects of streamflow, including traditions handed down through the generations regarding gathering, ceremonial and religious rites, and the ties to water that are pronounced in Hawaiian legend and lore. "There is a great traditional significance of water in Hawaiian beliefs and cultural practices...The flow of water from mountain to sea is integral to the health of the land. A healthy land makes for healthy people, and healthy people have the ability to sustain themselves (Kumu Pono Associates, 2001b, p.II:8)." Taro cultivation is addressed in this section of the report as well as the next section, 13.0 Noninstream Uses. This is because instream flow standards take into account both social and scientific information. For sociological and cultural purposes, taro cultivation can be considered an instream use as part of the "protection of traditional and customary Hawaiian rights," that is specifically listed as an instream use in the Water Code. Taro cultivation can also be considered a noninstream use since it removes water from a stream (even if water from taro loi is later returned to the stream). It could be argued that for scientific analysis, taro cultivation is an instream use since taro loi provide habitat for stream biota, but because the water is physically taken out of the stream, it is also a noninstream use. Another way to look at the approach of indentifying taro cultivation as both instream and noninstream uses is that when the Commission addresses taro cultivation as an instream use, it is generally in the context of traditional and customary Hawaiian rights; whereas when the Commission addresses taro cultivation as a noninstream use, it is approaching the issue from the aspects of agriculture and water use. In ancient Hawaii, the islands (*moku*) were subdivided into political subdivisions, or ahupuaa, for the purposes of taxation. The term ahupuaa in fact comes from the altar (*ahu*) that marked the seaward boundary of each subdivision upon which a wooden head of a pig (*puaa*) was placed at the time of the *Makahiki* festival when harvest offerings were collected for the rain god and his earthly representative (Handy et al., 1972). Each ahupuaa had fixed boundaries that were usually delineated by natural features of the land, such as mountain ridges, and typically ran like a wedge from the mountains to the ocean thus providing its inhabitants with access to all the natural resources necessary for sustenance. The beach, with its fishing rights, were referred to as *ipu kai* (meat bowl), while the upland areas for cultivation were called *umeke ai* (poi container hung in a net) (Handy et al., 1972). As noted earlier in Section 6.0, Maintenance of Ecosystems, Western concepts of ecosystem maintenance and watersheds are similar to the Hawaiian concept of ahupuaa, and so the Commission's surface water hydrologic units often coincide with or overlap ahupuaa boundaries. The hydrologic unit of Waimea includes parts of the ahupuaa of Waimea and Makaweli as shown in Figure 12-1. The ahupuaa boundaries are delineated based on the USGS Digital Line Graphs. These boundaries may be different from the information listed on legal documents such as deeds. **Figure 12-1.** Traditional ahupuaa boundaries in the vicinity of Waimea hydrologic unit. This hydrologic unit spans two ahupuaa – Waimea and Makaweli. (Source: State of Hawaii, Office of Planning, 2015j) An appurtenant water right is a legally recognized right to a specific amount of surface freshwater — usually from a stream — on the specific property that has that right. This right traces back to the use of water on a given parcel of land at the time of its original conversion into fee simple lands: When the land allotted during the 1848 Mahele was confirmed to the awardee by the Land Commission and/or when the Royal Patent was issued based on such award, the conveyance of the parcel of land carried with it the appurtenant right to water if water was being used on that land at or shortly before the time of the Mahele (State of Hawaii, Commission on Water Resource Management, 2007). An appurtenant right is different from a riparian right, but they are not mutually exclusive. Riparian rights are held by owners of land adjacent to a stream. They and other riparian landowners have the right to reasonable use of the stream's waters on those lands. Unlike riparian lands, the lands to which appurtenant rights attach are not necessarily adjacent to the freshwater source (i.e., the water may be carried to the lands via auwai or ditches), but some pieces of land could have both appurtenant and riparian rights. Appurtenant rights are provided for under the State Water Code, HRS §174C-101, Section (c) and (d) as follows: - Section (c). Traditional and customary rights of ahupuaa tenants who are descendants of native Hawaiians who inhabited the Hawaiian Islands prior to 1778 shall not be abridged or denied by this chapter. Such traditional and customary rights shall include, but not be limited to, the cultivation or propagation of taro on one's own kuleana and the gathering of hihiwai, opae, oopu, limu, thatch, ti leaf, aho cord, and medicinal plants for subsistence, cultural, and religious purposes. - Section (d). The appurtenant water rights of kuleana and taro lands, along with those traditional and customary rights assured by this section, shall not be diminished or extinguished by a failure to apply for or to receive a permit under this chapter. The exercise of an appurtenant water right is still subject to the water use permit requirements of the Water Code, but there is no deadline to exercise that right without losing it, as is the case for correlative and riparian rights, which must have been exercised before designation of a water management area. In August 2000, the Hawaii Supreme Court issued its decision in the Waiahole Ditch Combined Contested Case Hearing, upholding the exercise of Native Hawaiian and traditional and customary rights as a public trust purpose. These rights are described in the Commission's 2007 *Water Resource Protection Plan – Public Review Draft*, incorporating a later revision¹ as follows: Appurtenant water rights are rights to the use of water utilized by parcels of land at the time of their original conversion into fee simple lands i.e., when land allotted by the 1848 Mahele was confirmed to the awardee by the Land Commission and/or when the Royal Patent was issued based on such award, the conveyance of the parcel of land carried with it the appurtenant right to water.² The amount of water under an appurtenant right is the amount that was being used at the time of the Land Commission award and is established by cultivation methods that approximate the methods utilized at the time of the Mahele, for example, growing wetland taro.³ Once established, future uses are not limited to the cultivation of traditional products approximating those utilized at the time of the Mahele⁴, as long as those uses are reasonable, and if in a water management area, meets the State Water Code's test of reasonable and beneficial use ("the use of water in such a quantity as is necessary for economic and efficient utilization, for a purpose, and _ ¹ Although the final Water Resource Protection Plan had not been printed as of the date of this report, most edits had already been incorporated into the latest version, which the Commission utilized for this report. ² 54 Haw. 174, at 188; 504 .2d 1330, at 1339. ³ 65 Haw. 531, at 554; 656 P.2d 57, at 72. ⁴ Peck v Bailey, 8 Haw. 658, at 665 (1867). in a manner which is both reasonable and consistent with the State and county land use plans and the public interest"). As mentioned earlier, appurtenant rights are preserved under the State Water Code, so even in designated water management areas, an unexercised appurtenant right is not extinguished and must be issued a water use
permit when applied for, as long as the water use permit requirements are met [Figure 12-2]. The Hawaii Legislative Session of 2002 clarified that the Commission is empowered to "determine appurtenant rights, including quantification of the amount of water entitled to by that right," (HRS §174C-5(15)). In those cases where a Commission decision may affect an appurtenant right, it is the claimant's duty to assert the appurtenant right and to gather the information required by the Commission to rule on the claim. The Commission is currently in the process of developing a procedural manual to aid in the understanding and assembling of information to substantiate an appurtenant rights claim. **Figure 12-2.** Generalized process for determining appurtenant water rights. This process is generalized and may not fully explain all possible situations. It does not apply to Hawaiian Homes Lands. If you are Native Hawaiian you may have other water rights. The Commission conducted a cursory assessment of tax map key parcels to identify their associated Land Commission Awards, in an attempt to identify the potential for future appurtenant rights claims within the hydrologic unit of Waimea. Table 12-1 presents the results of the Commission's assessment. Table 12-1. Tax map key parcels with associated Land Commission Awards for the Waimea hydrologic unit. [LCA is Land Commission Award; Gr. is Grant; por. is portion; and G.L. is Government Lease] | | | Grant; por. is portion; and G.L. | | N-4 | |------------------------|----------------------------|----------------------------------|----------------------------|-------| | TMK | Landowner | LCA | Grants/Leases | Notes | | 414001009 | Gay & Robinson | 11299 | | | | 414001010 | Robinson Family | 11302:1 | | | | 414001011 | Robinson Family | 11302:2 | | | | 414001012 | Robinson Family | 11302:3 | | | | 414002004 | Govt. State | | G.L. 5-4168 | | | 414002005 | Govt. State | | G.L. 5-4036 | | | 414003001 | Govt. State | | G.L. 5-4500 | | | 414003003 | Govt. State | | G.L. 5-4069 | | | 414003004 | Govt. State | | G.L. 4-4051 | | | 414003005 | Govt. State | | G.L. 5-4052 | | | 414003006 | Govt. State | | G.L. 5-4053 | | | 414003007 | Govt. State | | G.L. 5-4054 | | | 414003008 | Govt. State | | G.L. 5-3307 | | | 414003009 | Govt. State | | G.L. 5-4082 | | | 414003010 | Govt. State | | G.L. 5-4055 | | | 414003011 | Govt. State | | G.L. 5-4068 | | | 414003012 | Govt. State | | G.L. 5-3442 | | | 414003013 | Govt. State | | G.L. 5-4056 | | | 414003014 | Govt. State | | G.L. 5-4049 | | | 414003016 | Govt. State | | G.L. 5-4050 | | | 414003017 | Govt. State | | G.L. 5-4507 | | | 414004001 | Govt. State | | G.L. 5-4480 | | | 414004002 | Govt. State | | G.L. 5-4067 | | | 414004004 | Govt. State | | G.L. 5-4065 | | | 414004006 | Govt. State | | G.L. 5-4064 | | | 414004008 | Govt. State | | G.L. 5-4088 | | | 414004009 | Govt. State | | G.L. 5-4089 | | | 414004011 | Govt. State | | G.L. 5-4091 | | | 414004012 | Govt. State | | G.L. 5-4090 | | | 414004013 | Govt. State | | G.L. 5-4084 | | | 414004014 | Govt. State | | G.L. 5-4081 | | | 414004016 | Govt. State | | G.L. 5-4063 | | | 414004017 | Govt. State
Govt. State | | G.L. 5-4062
G.L. 5-4061 | | | 414004018 | | | G.L. 5-4001
G.L. 5-4039 | | | 414004020
414004021 | Govt. State
Govt. State | | G.L. 5-4058 | | | 414004021 | Govt. State | | G.L. 5-4163 | | | 414004027 | Govt. State | | G.L. 5-4163
G.L. 5-4142 | | | 414004027 | Govt. State | | G.L. 5-4142
G.L. 5-4144 | | | 414004028 | Govt. State | | G.L. 5-4144
G.L. 5-4085 | | | 414004032 | Govt. State | | G.L. 5-3671 | | | 414004032 | Govt. State | | G.L. 5-3863 | | | 414004035 | Govt. State | | G.L. 5-4083 | | | 414004036 | Govt. State | | G.L. 5-4508 | | | 414004038 | Govt. State | | G.L. 5-4502 | | | 414004040 | Govt. State | | G.L. 5-4071 | | | 414004041 | other | | G.L. 5-4147 | | | 414004043 | Govt. State | | G.L. 5-4086 | | | 414004044 | Govt. State | | G.L. 5-4070 | | | 414004047 | Govt. State | | G.L. 5-4078 | | | 414004048 | Govt. State | | G.L. 5-4079 | | | 414004049 | Govt. State | | G.L. 5-4080 | | | 414004050 | Govt. State | | G.L. 5-4154 | | | 414004052 | Govt. State | | G.L. 5-4151 | | | 414004053 | Govt. State | | G.L. 5-4151 | | | 414004054 | Govt. State | | G.L. 5-4153 | | | 414004055 | Govt. State | | G.L. 5-4076 | | | 414004058 | Govt. State | | G.L. 5-4077 | | Table 12-1. Continued. Tax map key parcels with associated Land Commission Awards for the Waimea hydrologic unit. [LCA is Land Commission Award; Gr. is Grant; por. is portion; and G.L. is Government Lease; L.C.App.is Land Court Application] | | [LCA is Land Commission Award; Gr. is Grant; por. is portion; and G.L. is Government Lease; L.C.App.is Land Court Application] | | | | | | | | |------------------------|--|------------------|---------------|-------|--|--|--|--| | TMK | Landowner | LCA | Grants/Leases | Notes | | | | | | 414004059 | other | | G.L. 5-4150 | | | | | | | 414004062 | Govt. State | | G.L. 5-4510 | | | | | | | 414004063 | Govt. State | | G.L. 5-4512 | | | | | | | 414004068 | Govt. State | | G.L. 5-4074 | | | | | | | 414004069 | Govt. State | | G.L. 5-4811 | | | | | | | 414004073 | Govt. State | | G.L. 5-3671 | | | | | | | 414004074 | Govt. State | | G.L. 5-3671 | | | | | | | 414004075 | Govt. State | | G.L. 3671 | | | | | | | 414004076 | Govt. State | | G.L. 5-5309 | | | | | | | 415001003 | Robinson Family | 11278:1, 11278:1 | | | | | | | | 415001004 | Robinson Family | 11278:2 | | | | | | | | 415001005 | Robinson Family | 11278:2 | | | | | | | | 415001006 | Robinson Family | 11274, 11275 | | | | | | | | 415001007 | Robinson Family | 11277 | | | | | | | | 415001008 | Gay & Robinson | 11285 | | | | | | | | 415001009 | Gay & Robinson | 11283:1 | | | | | | | | 415001010 | Gay & Robinson | 11283:1 | | | | | | | | 415001011 | Gay & Robinson | 11280 | | | | | | | | 415001012 | Robinson Family | 11281 | | | | | | | | 415001013 | Gay & Robinson | 11279 | | | | | | | | 415001014 | Gay & Robinson | 11282 | | | | | | | | 415001015 | Robinson Family | 11285:1 | | | | | | | | 415001016 | Robinson Family | 11286:2 | | | | | | | | 415002001 | other | | Gr. 8810 | | | | | | | 415002002 | other | 10092, 10095 | | | | | | | | 415002004 | other | 10721:1 | | | | | | | | 415002005 | other | 9201:1 | | | | | | | | 415002006 | other | 10637:2 | 0 -000 | | | | | | | 415002007 | other | 0404 | Gr. 7988 | | | | | | | 415002008 | other | 9191 | Gr. 8109 | | | | | | | 415002009 | other | 9201:2 | O= 000F | | | | | | | 415002010 | other | 0040 | Gr. 8025 | | | | | | | 415002011 | other | 6310 | | | | | | | | 415002014 | other | 10721:2 | | | | | | | | 415002016 | other
Robinson Family | 6531
6522:2 | | | | | | | | 415002017 | • | 0322.2 | Gr. 5-14,447 | | | | | | | 415002020 | other
other | | Gr. 7183 | | | | | | | 415002021 | other | | Gr. 7392:1 | | | | | | | 415002022 | other | 5467 | GI. 1392.1 | | | | | | | 415002023
415002024 | other | 9194 | | | | | | | | 415002024 | other | 6643:1 | | | | | | | | 415002027 | other | 5308 | | | | | | | | 415002027 | other | 3300 | Gr. 8128 | | | | | | | 415002020 | other | 6700:2 | 01. 0120 | | | | | | | 415002032 | other | 0100.E | Gr. 7144 | | | | | | | 415002032 | Robinson Family | 9192 | 51. 7 177 | | | | | | | 415002034 | other | 0.02 | Gr. 8133 | | | | | | | 415002035 | Robinson Family | 6522:1 | 01. 0100 | | | | | | | 415002036 | other | 3321. | Gr. 10472 | | | | | | | 415002037 | other | 6700:1 | 02 | | | | | | | 415002037 | other | 6700:1 | | | | | | | | 415002039 | other | 10637:2 | | | | | | | | 415002041 | other | 6700:1 | | | | | | | | 415002042 | other | | Gr. 7144 | | | | | | | 415002044 | other | | Gr. 7144 | | | | | | | 415002046 | other | 9186 | | | | | | | | 415002047 | other | | Gr. 8026 | | | | | | | 415002048 | other | | Gr. 7383 | | | | | | | 415002049 | other | 6567:2 | | | | | | | | 415002050 | other | 10092, 1064 | | | | | | | | 415002051 | other | 8251 | | | | | | | | 415002053 | other | | Gr. 7183 | | | | | | | 415002054 | other | 9202 | | | | | | | Table 12-1. Continued. Tax map key parcels with associated Land Commission Awards for the Waimea hydrologic unit. [LCA is Land Commission Award; Gr. is Grant; por. is portion; and G.L. is Government Lease; L.C.App.is Land Court Application] | TMK | Landowner | rant; por. is portion; and G.L. is Govern
LCA | Grants/Leases | Notes | |------------------------|-----------------
--|-----------------|-------| | 415002056 | other | | Gr. 7183 | | | 415002057 | other | | Gr. 7392:2 | | | 415002058 | other | | Gr. 8142 | | | 415002059 | other | | Gr. 8127 | | | 415002060 | other | | Gr. 8129 | | | 415002061 | other | 6700:2 | 01.0120 | | | 415002063 | other | 0700.2 | Gr. 7144 | | | 415003002 | other | | 01.7144 | | | 415003003 | other | | L.C.App. 926 | | | 415003004 | other | 10688 | L.C.App. 927 | | | 415003004 | other | 10688, 9227 | L.O.App. 321 | | | | Robinson Family | The state of s | | | | 415003011
415003012 | Robinson Family | 235-V, 6280
4308-B | | | | | Robinson Family | | | | | 415003023 | | 11276 | | | | 415003025 | Robinson Family | 11309 | | | | 415003026 | other | 11284 | I C A 005 | | | 415003028 | other | | L.C.App. 925 | | | 415003029 | Robinson Family | 44070 | | | | 416001003 | Robinson Family | 11272 | 0 0055 | | | 416001004 | other | | Gr. 8055 | | | 416001005 | other | | Gr. 7113 | | | 416001006 | other | 6524:2 | | | | 416001010 | other | 6337 | | | | 416001011 | Robinson Family | 6553, 6337 | | | | 416001014 | other | 6271 | | | | 416001017 | other | 3410:3 | | | | 416001018 | Robinson Family | | L.C.App. 928 | | | 416001019 | other | 6331:2 | | | | 416001020 | other | 5612 | | | | 416001022 | Robinson Family | 6308-B, 6273:2, 11271 | | | | 416001023 | other | 5479 | | | | 416001024 | other | | L.C.App. 934 | | | 416001025 | Robinson Family | | L.C.App. 936 | | | 416001026 | other | 11270 | | | | 416001027 | Robinson Family | 6307 | | | | 416001046 | other | 6271 | | | | 416002004 | Govt. State | | Gr. 8111 | | | 416002005 | other | 236-B, 235-Z, 236-G, 235-Y | | | | 416002006 | other | | Gr. 7145 | | | 416002009 | other | | L.C.App. 461 | | | 416002010 | other | | L.C.App. 458 | | | 416002013 | other | 3411 | - 11 | | | 416002014 | other | 3597:2 | | | | 416002017 | other | 3309:2 | | | | 416002018 | other | 3309:2 | | | | 416002019 | other | 2300.2 | L.C.App. 6336:1 | | | 416002020 | other | 3309:2 | | | | 416002022 | Robinson Family | 235-X | | | | 416002022 | other | 3354 | | | | 416002027 | other | 6382 | | | | 416002027 | other | 6389:1 | | | | 416002030 | other | 6383:2, 8223, 6565-B | | | | 416002032 | Robinson Family | 6384:2 | | | | 416002032 | other | 6701:3 | | | | 416002034 | other | 2220 | | | | 416002034 | Robinson Family | 6701:1, 2290, 6701:2, 9903 | | | | | • | | | | | 416002036 | other | 5396:2 | | | | 416002037 | other | 6112:2 | C= 0E40 | | | 416002038 | other | | Gr. 8543 | | | 416002039 | other | | Gr. 8538 | | | 416002040 | other | | Gr. 5-15177 | | | 416002041 | Robinson Family | 7070.0 | Gr. 8917 | | | 416002042 | other | 7672:2 | | | | 416002044 | Robinson Family | 6755:3 | | | Table 12-1. Continued. Tax map key parcels with associated Land Commission Awards for the Waimea hydrologic unit. [LCA is Land Commission Award; Gr. is Grant; por. is portion; and G.L. is Government Lease; L.C.App. is Land Court Application] | | | rant; por. is portion; and G.L. is Government Leas | | | |-----------|-----------------|--|---------------------|-------| | TMK | Landowner | LCA | Grants/Leases | Notes | | 416002045 | other | | L.C.App. 6790 | | | 416002047 | other | 3353:1 | | | | 416002048 | other | 3587:2 | | | | 416002049 | Robinson Family | 7672:1 | | | | 416002051 | other | 10086:2 | | | | 416002052 | Robinson Family | 6334:2 | | | | 416002053 | other | 10086:1 | | | | 416002056 | Robinson Family | 236-C, 3352, 3608:3, 2290:2, 1976:1 | | | | 416002057 | other | 6274:1 | | | | 416002058 | other | 027 1.1 | Gr. 8247 | | | 416002059 | other | 6274:2 | 01. 02 11 | | | 416002060 | other | 3587:3 | | | | 416002061 | other | 0007.0 | Gr. 5860 | | | 416002063 | other | 6378:2, 3353:2 | G1. 3000 | | | 416002065 | Govt. State | 387, 1976:2 | | | | 416002066 | Robinson Family | 307, 1970.2 | Gr. 7146 | | | 416002072 | other | 235-X | GI. 7 140 | | | | | 233-7 | I C App 6226:1 | | | 416002073 | other | | L.C.App. 6336:1 | | | 416002075 | other | F200.4 | Gr. 8054 | | | 416002076 | other | 5396:1 | | | | 416003019 | Govt. State | 11180, 11135, 11181 | | | | 416003020 | other | 3585 | | | | 416003021 | other | 3585 | | | | 416003022 | other | 3589 | | | | 416003023 | other | 3587:4 | | | | 416003024 | Robinson Family | 2064:2, 235W:1 | | | | 416003026 | other | | L.C.App. 1595 | | | 416003027 | other | 2291, 3590, 3591:1 | | | | 416003028 | other | 3588 | | | | 416003030 | other | 3588 | | | | 416003031 | other | | L.C.App. 1277 | | | 416003032 | other | | L.C.App. 460 | | | 416003033 | other | | Gr. 7115 | | | 416003034 | other | 6306 | | | | 416003035 | other | 6268:1 | | | | 416003037 | other | | Gr. 13532 | | | 416003038 | Robinson Family | 6666 | | | | 416003043 | other | | Gr. 11534 | | | 416003046 | other | | L.C.App. 7713:42 | | | 416003051 | other | 3608:2 | 2.0., tpp. 77 10.12 | | | 416003052 | Robinson Family | 2064:3, 235W:2 | Gr. 11410 | | | 416003052 | other | 235W:2 | 01. 11410 | | | 416003054 | other | 2004.2 | Gr. 8130 | | | 416003034 | other | | Gr. 12539 | | | | | | | | | 416003059 | other | 2502.2 | Gr. 10769 | | | 416003060 | other | 3593:3 | Gr. 11534 | | | 416003068 | other | 2002 | | | | 416003071 | other | 6306 | | | | 416003074 | Govt. State | 3589 | | | | 416003075 | other | 6524:3 | | | | 416003077 | other | | L.C.App. 459 | | | 416003080 | other | 3588 | | | | 416003092 | other | 6268:1 | | | | 416003093 | other | | Gr. 10769 | | | 416003094 | other | | Gr. 10769 | | | 416003095 | other | | Gr. 10769 | | | 416003096 | other | | Gr. 10769 | | | 416003097 | other | | Gr. 10769 | | | 416003098 | other | | Gr. 10769 | | | 416003099 | other | | Gr. 10769 | | | 416004004 | other | | Gr. 11243 | | | 416004005 | other | | Gr. 12073 | | | 416004006 | other | | Gr. 8551:2 | | | | | | J 500 1.E | | Table 12-1. Continued. Tax map key parcels with associated Land Commission Awards for the Waimea hydrologic unit. [LCA is Land Commission Award; Gr. is Grant; por. is portion; and G.L. is Government Lease; L.C.App. is Land Court Application] | | | Grant; por. is portion; and G.L. is Government Lea | | | |------------------------|----------------------------------|--|---------------------------|-------| | TMK | Landowner | LCA | Grants/Leases | Notes | | 416004007 | other | | Gr. 8146 | | | 416004008 | other | | Gr. 10805 | | | 416004009 | other | | Gr. 12388 | | | 416004010 | other | | Gr. S-14, Gr. 9 | | | | | | Gr. 11994, Gr. 11494, Gr. | | | 416004011 | Govt. State | | 11501 | | | 416004018 | other | | Gr. 12822 | | | 416005004 | other | 6274:3, 7135, 6272, 6270:1 | | | | 416005005 | other | 6273 | | | | 416005007 | other | 6270:1 | | | | 416005022 | other | | Gr. 7223 | | | 416005070 | other | 6568:1 | | | | 416006002 | other | 2291, 3590, 6305, 3591:2 | 7303:3 | | | 416006006 | other | | Gr. 11674 | | | 416006011 | other | | Gr. 8145 | | | 416006025 | other | | Gr. 7779 | | | 416006034 | other | | L.C.App. 878 | | | 416006036 | other | | L.C.App.1322 | | | 416006045 | other | 2291, 3590, 6305, 3591:2 | Gr. 7303:3 | | | 416006046 | other | , | Gr. 7303:3 | | | 416010001 | other | 7713 | | | | 416011009 | other | 3310:2 | | | | 417001001 | Robinson Family | | | | | 417001002 | other | | | | | 417001003 | other | | | | | 417001004 | other | | | | | 417001008 | Gay & Robinson | | | | | 417001009 | Robinson Family | | | | | 417002002 | Gay & Robinson | 11273:2, 11300, 11264 | | | | 417002003 | Robinson Family | 11273:1, 7713:1 | | | | 417002004 | other | 9655 | | | | 417002005 | other | 9662:2 | | | | 417002006 | other | 9040, 9656, 11024 | | | | 417002007 | other | 9655-B:1 | | | | 417002008 | other | 9662:1 | | | | 417002009 | other | 9655-B:2 | | | | 417002010 | Gay & Robinson | 10354 | | | | 417003001 | other | 8258 | | | | | | 9653-B, 10670:1, 1035:2, 10350:1, | | | | 417003002 | Robinson
Family | 10669, 9130, 10943, 10670:2 | | | | 417003003 | other | 9665:2 | | | | 417003004 | other | 9665:1 | | | | 417003005 | other | 236-F | | | | 417003006 | other | 6304 | | | | 417003007 | other | 6277:2 | | | | 417003008 | other | 3112:1 | | | | 417003009 | other | 6343 | | | | 417003010 | other | 9144 | | | | 417003011 | other | 6552:1 | | | | 417003012 | other | 6578:2 | | | | 417003013 | other | 6552-B | | | | 417003014 | other | 6581 | | | | 417003015 | other | 9077 | | | | 417003016 | other | 9077 | | | | 417003017 | other | 6552:3 | | | | 417003018 | other | 236-E | | | | 417003019 | other | 6297 | | | | 417003020 | Robinson Family | 10696:1 | | | | 417003021 | Robinson Family | 10696:2 | | | | 417003022 | Robinson Family | 9666:1 | | | | 417003023 | Robinson Family | 9666:2 | | | | 417003024 | Gay & Robinson | 9657, 387 | | | | 417003025
417003026 | Gay & Robinson
Gay & Robinson | 236-D:1
3112:2 | | | | 417003026 | Robinson Family | 6333:1 | | | | 417003027 | Nobilison Family | U333. I | | | Table 12-1. Continued. Tax map key parcels with associated Land Commission Awards for the Waimea hydrologic unit. [LCA is Land Commission Award; Gr. is Grant; por. is portion; and G.L. is Government Lease; L.C.App. is Land Court Application] | TMK | Landowner | LCA | Grants/Leases | Notes | |-----------|-----------------|-------------------------------------|---------------|-------| | 417003028 | Robinson Family | 6353 | | | | 417003029 | other | 6316 | | | | 417004001 | other | 6566:2 | | | | | Govt. County of | | | | | 417004002 | Kauai | 6514:2 | | | | 417004003 | other | 6566:3 | | | | 417004004 | other | 6338:1 | | | | 417004005 | other | 6342 | | | | 417004006 | other | 6578:3 | | | | | | 6352:2, 6352:1, 7713:1, 6330, 6327, | | | | 417004007 | Robinson Family | 6518:1 6514:1, 10009, 5307 | | | | 417004008 | other | 6566:1 | | | | 417004009 | other | 6534 | | | | 417004010 | other | 11301:2 | | | | 417004011 | other | 11301:3 | | | | 417004012 | Robinson Family | 6566:4 | | | | 417004013 | other | 6566:4 | | | | 417004015 | Gay & Robinson | 236-D:2 | | | | 417004016 | Robinson Family | 6340 | | | | 417004017 | Robinson Family | 6588 | | | In accordance with the State Water Code and the Supreme Court's decision in the Waiahole Ditch Combined Contested Case Hearing, the Commission is focused on the assertion and exercise of appurtenant rights as they largely relate to the cultivation of taro. Wetland kalo or taro (*Colocasia esculenta* (L.) Schott) is an integral part of Hawaiian culture and agricultural tradition. The preferred method of wetland taro cultivation, where terrain and access to water permitted, was the construction of loi (flooded terraces) and loi complexes. These terraces traditionally received stream water via carefully engineered open channels called auwai. The auwai carried water, sometimes great distances, from the stream to the loi via gravity flow. In a system of multiple loi, water may either be fed to individual loi through separate little ditches if possible, or in the case of steeper slopes, water would overflow and drain from one loi to the next. Outflow from the loi may eventually be returned to the stream. The loi also served other needs including the farming of subsidiary crops such as banana, sugar cane, and ti plants that were planted on its banks, and the raising of fish such as oopu, awa, and aholehole within the waters of the loi itself. At least 85 varieties of taro were collected in 1931, each of which varied in color, locale, and growing conditions. The water needs of taro under wet conditions depend upon: 1) climate; 2) location and season (weather); 3) evaporation rate; 4) soil type; 5) ground water hydrology; 6) water temperature; and 7) agronomic conditions (crop stage; planting density and arrangement; taro variety; soil amendment and fertilization regime; loi drainage scheme; irrigation system management; and weed, pest, and disease prevalence and management). #### **Taro Production** In 2002, the State Office of Hawaiian Affairs cosponsored a "No Ka Lo'i Conference", in the hopes of bringing together taro farmers from around the state to share knowledge on the cultivation of taro. An outcome of the conference was an acknowledgement that farmers needed to better understand the water requirements of their taro crops to ensure and protect their water resource interests. The result of this effort was a 2007 USGS wetland kalo water use study, prepared in cooperation with the State Office of Hawaiian Affairs, which specifically examined flow and water temperature data in a total of 10 cultivation areas on four islands in Hawaii. The study reiterated the importance of water temperature in preventing root rot. Typically, the water in the taro loi is warmer than water in the stream because of solar heating. Consequently, a taro loi needs continuous flow of water to maintain the water temperature at an optimum level. Multiple studies cited in Gingerich, et al., 2007, suggest that water temperature should not exceed 77°F (25°C). Low water temperatures slow taro growth, while high temperatures may result in root rot (Penn, 1997). When the flow of water in the stream is low, possibly as a result of diversions or losing reaches, the warmer water in the taro loi is not replaced with the cooler water from the stream at a quick enough rate to maintain a constant water temperature. As a result, the temperature of the water in the taro loi rises, triggering root rot. The 2007 USGS study noted that "although irrigation flows for kalo cultivation have been measured with varying degrees of scientific accuracy, there is disagreement regarding the amount of water used and needed for successful kalo cultivation, with water temperature recognized as a critical factor. Most studies have focused on the amount of water consumed rather than the amount needed to flow through the irrigation system for successful kalo cultivation (Gingerich, et al., 2007)." As a result, the study was designed to measure the throughflow of water in commercially viable loi complexes, rather than measuring the consumption of water during taro growth. Because water requirements for taro vary with the stage of maturity of the plants, all the cultivation areas selected for the study were at approximately the same stage (i.e. near harvesting, when continuous flooding is required). Temperature measurements were made every 15 minutes for approximately 2 months. Flow measurements were collected at the beginning and the end of that period. Data were collected during the dry season (June – October), when water requirements for cooling kalo are higher. Surface water temperatures generally begin to rise in April and remain elevated through September, due to increased solar heating. Water inflow temperature was measured in 17 loi complexes, and only three had inflow temperatures rising above 27°C (the threshold temperature above which wetland kalo is more susceptible to fungi and associated rotting diseases). The average and median inflows from all 10 cultivation areas studied are listed in Table 12-2 below. The study indicated that the "values are consistent with previously reported inflow and are significantly higher than values generally estimated for consumption during kalo cultivation." It should also be noted that farmers were interviewed during field visits; most "believed that their supply of irrigation water was insufficient for proper kalo cultivation." Table 12-3 summarizes water-temperature statistics from the study. **Table 12-2.** Summary of water use calculated from loi and loi complexes by island, and the entire state. (Source: Gingerich et al., 2007, Table 10) [gad = gallons per acre per day; na = not available] | | Complex | | | | Loi | | | | | |--------------------------------|---------|-------------------------------|---|--|--------|-------------------------------|---|--|--| | island | number | average
water use
(gad) | average
windward
water use
(gad) | average
leeward
water use
(gad) | number | average
water use
(gad) | average
windward
water use
(gad) | average
leeward
water use
(gad) | | | Kauai | 6 | 120,000 | 97,000 | 260,000 | 2 | 220,000 | 220,000 | na | | | Oahu | 5 | 310,000 | 380,000 | 44,000 | 4 | 400,000 | 460,000 | 210,000 | | | Maui | 6 | 230,000 | 230,000 | na | na | na | na | na | | | Hawaii | 2 | 710,000 | 710,000 | na | na | na | na | na | | | average of all
measurements | | 260,000 | 270,000 | 150,000 | | 350,000 | 370,000 | 210,000 | | | median of all measurements | | 150,000 | 150,000 | 150,000 | | 270,000 | 320,000 | 210,000 | | **Table 12-3.** Water-temperature statistics based on measurements collected at 15-minute intervals for loi complexes on the island of Maui. (Source: Gingerich et al., 2007, Table 7) [°C = degrees Celsius; na = not applicable] | | | | | | Temperature (°C) | | | |------------------------|---------------------|-----------|--------------------------|------|------------------|------------------------|--| | Geographic designation | Area | Station | Period of record | Mean | Range | Mean
daily
range | Temperature measurements greater that 27°C (percent) | | Windward | Waihee | Ma08A-CI | 7/29/2006 -
9/22/2006 | 21.6 | 19.9 - 24.0 | 2.0 | 0.0 | | | | Ma08B-CIL | 7/29/2006 -
9/22/2006 | 24.9 | 20.3 - 34.0 | 7.6 | 25.4 | | | | Ma08B-CO | 7/29/2006 -
9/22/2006 | 25.5 | 20.0 - 35.5 | 5.7 | 27.0 | | Windward | Wailua
(Lakini) | Ma09-CIT | 7/30/2006 -
9/21/2006 | 20.7 | 18.5 - 23.4 | 2.3 | 0.0 | | | | Ma09-CO | 7/30/2006 -
9/21/2006 | 23.2 | 18.4 - 31.7 | 7.4 | 16.9 | | Windward | Wailua | Ma10-CI | 7/30/2006 -
9/21/2006 | 22.5 | 20.5 - 25.9 | 1.9 | 0.0 | | Windward |
Wailua
(Waikani) | Mal1-CI | 7/30/2006 -
9/21/2006 | 22.2 | 21.0 - 24.0 | 0.7 | 0.0 | | | | Ma11-CO | 7/30/2006 -
9/21/2006 | 26.1 | 22.1 - 31.8 | 3.3 | 29.1 | | Windward | Keanae | Ma12-CI | 7/31/2006 -
9/21/2006 | 20.0 | 19.0 - 21.9 | 1.0 | 0.0 | | | | Ma12-CO | equipment malfunction | na | na | na | na | Historical uses can also provide some insight into the protection of traditional and customary Hawaiian rights. Without delving into the extensive archive of literature (refer to Kumu Pono Associates, 2001a), Handy et al., in *Native Planters of Old Hawaii* (1972), provide a limited regional description as follows: East of Maliko the number of named ahupua 'a is evidence of habitation along this coast. Two kama'aina at Ke'anae said that there were small lo'i developments watered by Ho'olawa, Waipi'o, Hanehoi, Hoalua, Kailua, and Na'ili'ilihaele Streams, all of which flow in deep gulches. Stream taro was probably planted along the watercourses well up into the higher kula land and forest taro throughout the lower forest zone. The number of very narrow ahupua'a thus utilized along the whole of the Hamakua coast indicates that there must have been a very considerable population. This would be despite the fact that it is an area of only moderate precipitation because of being too low to draw rain out of trade winds flowing down the coast from the rugged and wet northeast Ko'olau area that lies beyond. It was probably a favorable region for breadfruit, banana, sugar cane, arrowroot; and for yams and 'awa in the interior. The slopes between the gulches were covered with good soil, excellent for sweet-potato planting. The low coast is indented by a number of small bays offering good opportunity for fishing. The Alaloa, or 'Long-road,' that went around Maui passed through Hamakua close to the shore, crossing streams where the gulches opened to the sea. Individual cultural resources of Waimea Hydrologic Unit were not classified by the Hawaii Stream Assessment (HSA), but generally classified based on the Historic Preservation Division database. Data were collected in three general areas of: 1) archaeological; 2) historical; and 3) modern practices. Archaeological data were originally compiled by the State Historic Preservation Division and are only current to 1990, the date of the HSA (Table 12-4). # **Fishponds** Fishponds are another integral part of traditional Hawaiian culture, which speaks volumes of native Hawaiian skill and knowledge of aquaculture, which has also seen a resurgence of interest in recent years. Fishponds are found throughout the Hawaiian Islands and were either man-made or natural enclosures of water used for the raising and harvesting of fish and other aquatic organisms. Kikuchi (1973) identified six main types of fishponds, two of which are associated with streams (*loko wai*, *loko ia kalo*) and one type is associated with fresh water springs (*kaheka* or *hapunapuna*). - Type III *Loko Wai*: An inland fresh water fishpond which is usually either a natural lake or swamp, which can contain ditches connected to a river, stream, or the sea, and which can contain sluice grates. Although most frequently occurring inland, *loko wai* are also located along the coast near the outlet of a stream. - Type IV *Loko Ia Kalo*: A fishpond utilizing irrigated taro plots. *Loko ia kalo* are located inland along streams and on the coast in deltas and marshes. - Type VI *Kaheka* and *Hapunapuna*: A natural pool or holding pond. The majority, if not all of these types of ponds, are anchialine ponds with naturally occurring shrimp and mollusks. According to a 1990 Hawaii Coastal Zone Management Program *Hawaiian Fishpond Study for the Islands of Hawaii, Maui, Lanai, and Kauai,* there are no fishponds present in the Waimea hydrologic unit (DHM, Inc., 1990), but along the coastline near the hydrologic unit, there is a single historic fishpond located in the Kekaha area. Table 12-4. Cultural resource elements evaluated as part of the Hawaii Stream Assessment for Waimea Stream. | Category | Value | |--|------------| | Survey coverage: The extent of archaeological survey coverage was analyzed and recorded as complete, partial, very limited, and none. Few valleys are completely surveyed. Many have little or no survey coverage. | Partial | | Predictability: The ability to predict what historic sites might be in unsurveyed areas was scored as high, medium, or low predictability or unable to predict. A high score was assigned if archaeologists were able to predict likely site patterns in a valley given historic documents, extensive archaeological surveys in nearby or similar valleys, and/or partial survey coverage. A low score was assigned if archaeologists were unable to predict site patterns in a valley because of a lack of historical or archaeological information. A medium score was assigned to all other cases. | All others | | Number of Sites: The actual number of historic sites known in each valley is straightforward yet very time consuming to count. Instead, archaeologists used survey information to estimate the number of sites in each valley. These figures, adequate for this broad-based assessment, are only rough estimates. | 8 | | Valley significance as a Whole District: The overall evaluation of each valley's significance was made considering each valley a district. The significance criteria of the National and Hawaii Registers of Historic Places were used. Criterion A applies if the district is significant in addressing broad patterns of prehistory or early history. Criterion B applies if the district is associated with important people (rulers) or deities. Criterion C applies if the district contains excellent examples of site types. Criterion D applies if the district is significant for information contained in its sites. Finally, Criterion E applies if the district is culturally significant for traditionally known places or events or for sites such as burials, religious structures, trails, and other culturally noteworthy sites. | ACDE | Site Density: Medium The density patterns of historic sites make up a variable extremely important to planners. Three ranks were assigned: low for very few sites due either to normal site patterning or extensive land alteration, moderate for scattered clusters of sites, and high for continuous sites. Valleys with moderate or high density patterns are generally considered moderate or high sensitivity areas. Site Specific Significance: The site specific significance variable was developed for valleys that had low densities of sites (very few sites) due either to normal site patterning or to extensive land alteration. An example of the first type might be a valley with housing sites on the side but too narrow for taro or housing sites on the valley floor. The second type might be a valley in which there had been sugar cane cultivation but a large heiau was left. The site specific significance of these valleys was categorized as either: 1) sites significant solely for information content which can undergo archaeological data recovery; or 2) sites significant for multiple criteria and merit preservation consideration. Those categorized as meriting preservation consideration would likely include large heiau, burial sites, and excellent examples of site types. Overall Sensitivity: The overall sensitivity of a valley was ranked very high, high, moderate, low, or unknown. Very high sensitivity areas have moderate or high densities of sites with little or no land alteration. They are extremely important archaeological and/or cultural areas. High sensitivity areas have moderate or high densities of sites with little or no land alteration. Moderate sensitivity areas have very few sites with the sites meriting preservation consideration due to multiple criteria or moderate densities of sites with moderate land alteration. Low sensitivity areas have very few sites due to normal site patterning or due to extensive land alteration. The sites present are significant solely for their informational content, which enable mitigation through data recovery. Those valleys where no surveying had been undertaken and the ability to predict what might be found was low were ranked unknown. Historic Resources: Yes High Several types of sites were considered by inclusion in this section, particularly bridges, sugar mills and irrigation systems. Those that are listed on the State or National register were inventoried, but none of them assessed. Taro Cultivation: Streams and stream water have been and continue to be an integral part of the Hawaiian lifestyle. The committee identified a number of factors important to current Hawaiian practices. These include current taro cultivation, the potential for taro cultivation, appurtenant rights, subsistence gathering areas, and stream-related mythology. The committee felt that a complete assessment of the cultural resources of Hawaii's streams should include these items but, due to limits of information, only the current cultivation of taro was included. ### **Hawaiian Home Lands** Another component in the assessment of traditional and customary
Hawaiian rights is the presence of Department of Hawaiian Home Lands (DHHL) parcels within the surface water hydrologic unit. The mission of DHHL is to effectively manage the Hawaiian Home Lands trust and to develop and deliver land to native Hawaiians (PBR Hawaii, 2004). In June 2004, DHHL published the Kauai Island Plan which served to examine infrastructure needs, provide development cost estimates, and identify priority areas for homestead development. Of the more than 20,000 acres of DHHL land on the island of Kauai, no parcels occur within the Waimea hydrologic unit. However, DHHL manages a large (15,061 acre) parcel of acricultural land in the Kekaha hydrologic unit that receives water for crop and livestock irrigation from the Kokee Ditch originating in the Waimea hydrologic unit. Currently, water demand is only 0.29 mgd, but could be higher if further development takes place as planned (State of Hawaii, Department of Hawaiian Homelands, 2011). The development of the Waimea parcel is a top priority for DHHL, with a variety of proposed land uses (Table 12-5). In December 2015, DHHL placed a reservation of 31.45 mgd for water from the Waimea hydrologic unit. In June 2017, the Commission approved a modified reservation of 6.903 mgd of surface water for DHHL. **Table 12-5.** Existing and proposed land uses and area for the DHHL Waimea parcel. (Source: State of Hawaii, Department of Hawaiian Homelands, 2011) | Existing land uses | Area (mi²) | Proposed Land uses | Area (mi²) | |-------------------------------|------------|-------------------------|------------| | Pastoral | 0.742 | Pastoral | 0.742 | | Vacant | 1.313 | Residential | 0.316 | | Diversified agriculture | 0.031 | Subsistence Agriculture | 0.334 | | Military (ammunition storage) | 0.041 | General Agriculture | 19.573 | | DLNR game management | 21.25 | Special District | 1.966 | | | | Community Use | 0.066 | | | | Conservation | 0.536 | ### 13.0 Noninstream Uses Under the State Water Code, noninstream uses are defined as "water that is diverted or removed from its stream channel...and includes the use of stream water outside of the channel for domestic, agricultural, and industrial purposes." Article XI, Section 3 of the State Constitution states: "The State shall conserve and protect agricultural lands, promote diversified agriculture, increase agricultural self-sufficiency and assure the availability of agriculturally sustainable lands." Water is crucial to agriculture and agricultural sustainability. Article XI, Section 3 also states, "Lands identified by the State as important agricultural lands needed to fulfill the purposes above shall not be reclassified by the State or rezoned by its political subdivisions without meeting the standards and criteria established by the legislature and approved by a two-thirds vote of the body responsible for the reclassification or rezoning action. [Add Const Con 1978 and election Nov 7, 1978]." It is the availability of water that allows for the designation of Important Agricultural Lands. The Hawaii Farm Bureau Federation, Hawaii's largest advocacy organization for general agriculture, states that agriculture is a public trust entity worthy of protection, as demonstrated in its inclusion in the State Constitution. They, on behalf of farmers and ranchers, point to the importance of large-scale agriculture to sustainability and self-sufficiency of our islands, particularly in times of catastrophe when imports are cut off. Currently, there are no designated Important Agriculture Lands in the Kekaha or Waimea hydrologic units. In most cases, water is diverted from the stream channel via a physical diversion structure. Diversions take many forms, from small PVC pipes in the stream that remove relatively small amounts of water, to earthen auwai (ditches), hand-built rock walls, and concrete dams that remove relatively large amounts of water. # Water Leaving the Waimea Hydrologic Unit in Ditch Systems Water is most often used away from the stream channel and is not returned; however, as in the case of taro fields, water may be returned to the stream at some point downstream of its use. While the return of surface water to the stream would generally be considered a positive value, this introduces the need to consider water quality variables such as increased temperature, nutrients, and dissolved oxygen, which may impact other instream uses. The Kokee and Kekaha ditches were designed to remove water from the Waimea hydrologic unit without returning it to any of the streams in order to supply irrigation water for sugarcane lands (Table 13-1). Currently, there is limited demand for irrigation water from the Kokee system, with DHHL using an estimated 0.29 mgd and Wines of Kauai agricultural tenant using approximately 0.29 mgd. The DLNR managed dam on Puu Lua Reservoir (Kokee Ditch fed) is currently not up to code and reservoir water height is limited to 60 ft. Thus, for dam safety reasons, the rate of flow into Puu Lua Reservoir is currently restricted. The last sluice gate prior to Puu Lua Reservoir is the release into Kauhao Gulch (Figure 13-1). To maintain a debris free gate and to prevent silt buildup in the basin behind the gate, approximately 0.3 mgd is permitted to flow under the gate, although this flow may be eliminated with more frequent maintenance. Further, the top half of the gate has been removed so that any higher flows pass over the gate. As proper maintenance of the ditch requires a wetted surface to prevent ditch walls from collapsing (in unlined portions) and to limit vegetation growth, approximately 1.5 mgd is maintained up to to Puu Moi divide. This practice results in less than 1.0 mgd of discharge from the end of the Kokee ditch. An additional benefit of maintaining the ditch past the Puu Moi Divide is that ditch water can serve as a backup supply to the Menehune Ditch and Mana Plain water users when the Kekaha Ditch is shut down for repairs. The ditch that brings water from the Puu Moi divide to DHHL land is in poor condition and needs upgrading to properly service future DHHL development plans (State of Hawaii-DHHL, 2011). Additionally, discharge of water from a ditch system into a stream may introduce invasive species. For example, the Kokee Ditch system is known to provide habitat for many non-native species, including rainbow trout (*Oncorhynchus mykiss*), Tahitian prawn (*Macrobrachium lar*), and mosquito fish (*Gambusia affinis*). **Table 13-1.** Historic Timeline of Irrigation Systems in West Kauai. (Source: Wilcox, 1996) #### Hanapepe and Makaweli Streams - 1894 Alexander & Baldwin (A&B) is established as an agency - 1889 Hawaiian Sugar Company (Makaweli Plantation) incorporated with Henry P. Baldwin as principal shareholder - 1889 A&B signed 50-year lease of land from Gay & Robinson - 1889 Hanapepe Ditch construction began - 1889 Hanapepe Ditch construction completed at at cost of \$152,013 - 1902 Olokele Ditch construction began, engineered by Michael M. O'Shaughnessy - 1904 Olokele Ditch construction completed at a cost of \$360,000 - 1898 A&B gain control of Hawaiian Commercial & Sugar (HC&S), then become its agent shortly thereafter. - 1900 A&B is incorporated with accumulated assets of \$1.5 million, compared with a net profit of just \$2.627.20 in 1895 - 1940 Unable to reach agreement on new leases, Hawaiian Sugar Company is terminated and Olokele Sugar Company was formed under the agency of C. Brewer & Company - Gay & Robinson assumes complete control of water collection systems and delivery to Olokele Sugar Company - 1948 Gay & Robinson and C. Brewer & Company build the Koula Ditch Tunnel to replace the Hanapepe Ditch flumes, limited ditch leakage - 1994 Olokele Sugar Company merges with Gay & Robinson #### Waimea Streams - 1878 Kekaha Sugar Company started by Valdemar Knudsen with crown leases on Kekaha, Kokee and Mana lands - 1884 Waimea Sugar Mill Company is established, leasing land from missionary George Rowell - 1889 Kekaha Sugar installed 10 mgd pump for groundwater irrigation - 1902 Irrigation from groundwater and nearby swamps resulted in increased salinity - Waimea Ditch construction began - 1903 Waimea Ditch (aka Kikiaola Ditch) construction completed at a cost of \$36,278 - 1904 Hans Peter Fay, newphew of Knudsen, purchases Waimea Sugar Mill Company lands from Rowell principally for the water rights - 1905 Mana wells drop by 4 feet and salinity goes from 7 to 100 grains per gallon due to overpumping crops fail or not planted due to lack of water - 1906 Kekaha Ditch construction began with diversion at location site of Mauka Powerhouse - 1907 Kekaha Ditch construction completed at a cost of \$240,000 to \$290,000 - 1912 Kekaha Ditch extended to Koaie and Waiahulu diversions including Mauka Powerhouse - 1923 George R. Eward repaired and realigned Kikiaola Ditch for \$45,471 - Kokee Ditch construction began following government leasing stipulating development of additional mauka acreage - 1925 Kokee Ditch construction completed at a cost of \$500,000 to \$680,000 - 1969 Waimea Sugar Mill Company reorganized into Kikiaola Land Company, leasing ditch and cane lands to Kekaha Sugar - 1969 Kikiaola Ditch closed - 1999 Kekaha Sugar Company declared banrupcy - 2003 Kekaha Agriculture Association forms to manage ditch, road and electrical infrastructure In addition to the amount of water currently (or potentially) being diverted offstream, the Commission must also consider the diversion structure and the type of use, all of which impact instream uses in different ways. The wide range of diversion structures, as noted above, is what makes regulation of surface water particularly difficult, since one standard method cannot be depended upon for monitoring and measuring flow. The ease of diverting streamflow, whether it be by gravity-flow PVC pipe, pump, or a dug channel, also plays a role in the convenience of diverting surface water and the abundance of illegal,
non-permitted diversions. Upon the enactment of the State Water Code and subsequent adoption of the Hawaii Administrative Rules, the Commission required the registration of all existing stream diversions statewide. The Commission categorized the diversions and filed registrations according to the registrant's last name or company name. While it is recognized that the ownership and/or lease of many of the properties with diversions has changed since then, the file reference (FILEREF) remains the name of the original registrant file (Table 13-2) with locations depicted in Figure 13-1. The Commission's records for the hydrologic unit of Waimea indicate that there are a total of 45 registered diversions, of which 12 are Gay & Robinson diversions and 17 are former Kekaha Sugar Co. diversions now managed by the Agriculture Development Corporation. This information is derived from original registration documents, much of which has not been field verified and may have changed. In 2007, the Commission contracted R.M. Towill Corporation to conduct a statewide diversion verification inventory starting with priority areas across parts of the island of Kauai. Data from this study, along with information collected from Commission staff site visits, and information extracted from the original registration files regarding the registered diversions may be found in Table 13-2. Since the enactment of HAR Title 13 Chapter 168, stream diversion works permits are required for the construction of new diversions or alteration of existing diversions, with the exception of routine maintenance. These permitted (as opposed to "registered") diversion works are not part of the Commission's verification effort, nor have any diversions been permitted in the Waimea hydrologic unit. **Figure 13-1.** All registered diversions and ditches identified in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2004d; State of Hawaii, Commission on Water Resource Management, 2015g) **Table 13-2.** Registered stream diversions for the Waimea Hydrologic Unit. (Source: State of Hawaii, Commission on Water Resource Management, 2015) | FILEREF | Stream | Notes | |---------------------------------|------------------------------|--| | TILLINLI | Name | Notes | | MILLER R&D | Elekeniiki | Stream diversion, Miller Intake from Elekeniike. | | STATE PARK KAU | Elekeninui | Stream diversion, pump from Elekeninui Stream. | | WILCOX C&G | Elekeninui | Stream diversion, pump from Unnamed stream. | | | | Stream diversion, pipe from Elekeninui stream. See also new entry for WARTHER FX; found | | WARTHER FX | Elekeninui | another declaration form in file. | | KIKIAOLA LAND | Halemanu | Stream diversion, pipe from Halemanu stream and rights claim. | | HEE RJ | Halemanu | Stream diversion, dam in Halemanu stream. Located on State Forest Reserve land. | | | | Stream diversion, pipe from Kahana stream. Diversion to Pilipiliahaumaka (no field verification, | | GAY & ROBINSON | Kahana | but has old div # assigned). | | GAY & ROBINSON | Kahana | Stream diversion, Kahana stream-Halemoki. (no field verification, but has old div # assigned). | | EGO K | Kokee | Stream diversion, pump from Kokee stream. Location of use is TMK 1-4-004:035 | | GAY & ROBINSON | Loli | Stream diverson, hand carry from Loli stream (no field verification, but has old div # assigned). | | GAY & ROBINSON | Makaweli | Stream diversion, pump from Makaweli river (no field verification, but has old div # assigned). | | | | Stream diversion, Makaweli ditch #1 from Makaweli river. There are nine individual end users | | GAY & ROBINSON | Makaweli | of this diversion (no field verification, but has old div # assigned). | | CAV & DODINGON | Makawali | Stream diversion, Makaweli ditch #2 from Makaweli river. One end user of this diversion (no | | GAY & ROBINSON | Makaweli | field verification, but has old div # assigned). | | EGO K
KEKAHA SUGAR | Maluapopoki
Mohihi Ditch | Stream diversion, pipe from Maluapopoki stream. Location of use is TMK 1-4-004:035. Stream diversion, Kumuwela #5 from Unnamed stream to Kokee ditch (new entry). | | | | Stream diversion, Namiuwela #5 from Offinamed stream to Kokee ditch (new entry). Stream diversion. Nawaimaka stream to Kokee ditch. | | KEKAHA SUGAR
KEKAHA SUGAR | Mohihi Ditch
Mohihi Ditch | Stream diversion, Halemanu stream to Kokee ditch. | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Kumuwela #4 from Unnamed stream to Kokee ditch (new entry). | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Kokee stream to Kokee ditch. | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Mohihi #3 from Unnamed stream to Kokee ditch | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Mohihi #2 from Unnamed stream to Kokee ditch | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Kumuwela #3 from Unnamed stream to Kokee ditch (new entry). | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Kumuwela #2 from Unnamed stream to Kokee ditch (new entry). | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Waiakoali stream dam to Kokee ditch. | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Kumuwela #1 from Unnamed stream to Kokee ditch (new entry). | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Kawaikoi stream to Kokee ditch. | | KEKAHA SUGAR | Mohihi Ditch | Stream diversion, Kauikinana stream to Kokee ditch. | | KEKAHA SUGAR | Mohihi | Stream diversion, Mohihi stream intake to Kokee ditch. | | | | Stream diversion, dam at Olokele river-Olokele. Declared Q=Nonopahu guage (included in | | GAY & ROBINSON | Olokele | Olokele System Q figures); (no field verification, but has old div # assigned). | | HOOKANO I | Unnamed | Spring diversion, pump from spring. Diversion is on an intermittant stream. | | | | Stream diversion, Kalopopo stream-Olokele. Declared Q=Nonopahu guage (included in | | GAY & ROBINSON | Unnamed | Olokele System Q figures); (no field verification, but has old div # assigned). | | | | Stream diversion, Kalopopo Stream-Olokele. Delcared Q=Nonopahu Guage (included in | | GAY & ROBINSON | Unnamed | Olokele System Q figures); (no field verification, but has old div # assigned). | | | | Stream diversion, Kaluawai stream-Olokele. Declared Q=Nonopahu guage (included in | | GAY & ROBINSON | Unnamed | Olokele System Q figures); (no field verification, but has old div # assigned). | | WILLIAMSON HD | Unnamed | Stream diversion, pipe from Unnamed stream. Land is leased from the State. | | | Unnamed | Spring diversion, from Unnamed spring to Kanekula. New entry, diverted flow is only used by | | GAY & ROBINSON | spring | one tenant. | | | | Stream diversion, Waianuenue stream-Olokele. Declared Q=Nonopahu guage (included in | | GAY & ROBINSON | Waianuenue | Olokele System Q figures); (no field verification, but has old div # assigned). | | KAOHI AG | Waimea | Stream diversion, pipe from Waimea river and rights claim. | | NORTHRUP KING | Waimea | Stream diversion, pump from Waimea River. | | DIONIEED LILINIE | 14/ | Stream diversion, pump from Waimea stream. Estimated water use declared for 1987 is 10 | | PIONEER HI INT | Waimea | million acre-inches. | | NORTHRUP KING | Waimea | Stream diversion, pump from Waimea River. | | CAV & DODINGON | Waimea | Stream diversion, Peekauai ditch from Waimea river. There are seven individual end users | | GAY & ROBINSON | Waimea | downstream (no field verification, but has old div # assigned). | | NORTHRUP KING
DUNSENBERRY FD | Waimea
Waimea | Stream diversion, occasional use of nump from Waimea stream and rights claim | | KEKAHA SUGAR | Waimea | Stream diversion, occasional use of pump from Waimea stream and rights claim. Stream diversion, Kukui tributary-Waimea to Kekaha ditch. | | KEKAHA SUGAR
KEKAHA SUGAR | Waimea | Stream diversion, Koaie stream dam to Kekaha ditch. | | | | | | KEKAHA SUGAR | Waimea | Stream diversion, Waihulu dam on Waimea river to Kekaha ditch (called Waihulu dam in file). | **Table 13-3.** Registered diversions in the Waimea hydrologic unit: Kokee System. [Source of photos are denoted at the end of each description; CWRM, Commission on Water Resource Management; Arrows () indicate general direction of natural water flow to and out of diversions; Chevrons () indicate direction of diverted surface water flow] | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active (Yes/No) | Verified (Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | |-----------|----------------|---------------|---------------------------|-----------------|-------------------|----------------------|--------------------------| | REG.620.2 | KEKAHA SUGAR | 4-1-4-001:003 | unknown | Yes | Yes | | _ | Waiakoali Stream is diverted by a concrete dam across the channel that captures 100% of base flow. Water is diverted along the right back into the Kokee Ditch. There is significant leakage of water underneath the diversion and along the left back where erosion has cut around the diversion. The abandoned Mohihi Ditch would have brought water to Waiakoali above this diversion. **Photos.** a) Water flowing into diversion structure from Waiakoali Stream (CWRM, 07/2014); b) Diversion structure across the channel (CWRM, 07/2014); c) Diverted water along right bank of stream (CWRM, 07/2014); d) View of ditch from diversion structure along right bank (CWRM, 07/2014). Table 13-3. Continued. Registered diversions in the Waimea hydrologic unit: Kokee System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active (Yes/No) | Verified (Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | |--------------|----------------|---------------|---------------------------|-----------------|-------------------|----------------------|--------------------------| | REG.620.2 | KEKAHA SUGAR | 4-1-4-001:003 | unknown | Yes |
Yes | | | | 337 : 1 1: 6 | S. F 17 | | | | | | | Waiakoali Stream [continued] e) **Photos.** e) Diversion structure across the channel (CWRM, 07/2014); f) Downstream view of river from diversion structure (CWRM, 07/2014). **Table 13-3.** Continued. Registered diversions in the Waimea hydrologic unit: Kokee System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active
(Yes/No) | Verified
(Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | |-----------|----------------|---------------|---------------------------|--------------------|----------------------|----------------------|--------------------------| | REG.616.2 | KEKAHA SUGAR | 4-1-4-001:003 | unknown | Yes | Yes | | | Water is diversted from Kowaikoi Stream along the right bank with a concrete structure inlaid between large boulders. Diverted water enters a tunnel and meets with water diverted from Waiakoali Stream flowing in a flume across the Kawaikoi gulch. Measurement of streamflow upstream of diversion is available from 1917-present by USGS (station #16010000) **Photos.** a) Upstream view of Kawaikoi above diversion (CWRM 07/2014); b) diversion structure and gate channeling water into ditch on right bank (CWRM 07/2014); c) Water diverted from Waiakoali stream crosses Kawaikoi in a flume to combine with Kawaikoi diverted water(CWRM 07/2014); d) Diversion structure from the left bank (CWRM 07/2014). Table 13-3. Continued. Registered diversions in the Waimea hydrologic unit: Kokee System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active
(Yes/No) | Verified
(Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | |-----------|----------------|---------------|---------------------------|--------------------|----------------------|----------------------|--------------------------| | REG.616.2 | KEKAHA SUGAR | 4-1-4-001:003 | unknown | Yes | Yes | | | Kawaikoi Stream [continued] e) **Photos.** e) Diverted water flowing under gate into ditch along the right bank (CWRM 07/2014); f) Diverted water in ditch along the right bank flowing into tunnel past the control gate (CWRM 07/2014). **Table 13-3.** Continued. Registered diversions in the Waimea hydrologic unit: Kokee System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active
(Yes/No) | Verified
(Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | |-----------|----------------|-------------|---------------------------|--------------------|----------------------|----------------------|--------------------------| | | | 4-1-4- | | | | | | | REG.607.2 | KEKAHA SUGAR | 001:013 | unknown | Yes | Yes | | | Water is diverted from Waiakoali and Kawaikoi streams into the Kokee Ditch. The ditch then dumps water into Kauaikinana stream up stream of the diversion pictured here. The diversion structure is concrete. Measurement of natural flow of Kauaikinana stream is available from 1919-1925 from the USGS (station #16012000). The ditch tunnel sluice gate only permits a portion of the water dumped into the stream to flow into the tunnel, unnaturally augmenting the flows in Kauaikinana downstream of the diversion. **Photos.** a) Upstream view of stream before Kokee Ditch (CWRM, 07/2014); b) Pipe exiting tunnel transporting water from ditch into stream; c) Diversion structure across stream channel redirecting flow into tunnel (CWRM, 07/2014) d) Regulation gate on diversion structure (CWRM, 07/2014). **Table 13-3.** Continued. Registered diversions in the Waimea hydrologic unit: Kokee System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active
(Yes/No) | Verified
(Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | | |-----------|----------------|---------------|---------------------------|--------------------|----------------------|----------------------|--------------------------|--| | REG.622.2 | KEKAHA SUGAR | 4-1-4-001:013 | unknown | Yes | Yes | | | | Water is diverted from Waiakoali, Kawaikoi, and Kauaikinana streams into Kokee Ditch which dumps water into Kokee Stream. A concrete diversion across the whole channel has a place for a sluice gate (nothing currently in place). Diversion of the combined flows is regulated by the sluice gate in front of the tunnel and the height of the gate regulating flow downstream. Currently (07/2015) downstream flow in the Kokee Stream is being augmented by excess flow from the ditch not taken by the tunnel. **Photos.** a) Kokee Ditch dumping water into Kokee Stream (CWRM, 07/2015); b) Downstream view from diversion structure (CWRM, 07/2015); c) Diversion structure across channel (CWRM, 07/2015); d) Sluice gate regulating flow into the tunnel. Table 13-3. Continued. Registered diversions in the Waimea hydrologic unit: Kekaha System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active
(Yes/No) | Verified
(Yes/No) | Riparian
(Yes/No) | Rights Claim (Yes/No) | |----------|----------------|--------------|---------------------------|--------------------|----------------------|----------------------|-----------------------| | 609.2 | KEKAHA SUGAR | 4-15-001-017 | | YES | YES | | | Water is diverted from Koaie into the Waiahulu stream and then into Kekaha Ditch (tunnel). A concrete diversion across the whole channel has a place for a sluice gate (only two boards currently in place). **Photos.** a) Koaie Stream flowing into a tunnel (CWRM, 12/2015); b) Upstream view from diversion structure (CWRM, 12/2015); c) Diversion structure across channel (CWRM, 12/2015); d) Upstream view looking at gate regulating flow into the tunnel; d) oopu in pool near diversion. Table 13-3. Continued. Registered diversions in the Waimea hydrologic unit: Kekaha System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active
(Yes/No) | Verified
(Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | |----------|----------------|-------------|---------------------------|--------------------|----------------------|----------------------|--------------------------| | 605.2 | KEKAHA SUGAR | 4-1-5-001 | | YES | YES | | | Waiahulu Stream receives water from the upstream catchment that includes the Kokee Ditch system. Regulated stream flows are available from USGS station #16016000 from 1925-1968. **Photos.** a) Waihulu diversion structure (CWRM 12/2015); b) Waihulu Stream with tunnel bringing water from Koaie Stream diversion (CWRM 12/2015); c) Kekaha Ditch intake off Waihulu Stream (CWRM 12/2015); d) upstream view of Waihulu Stream from Waihulu Diversion (CWRM 12/2015); e) Downstream view past Waihulu control point with boards up (CWRM 12/2015) Table 13-3. Continued. Other registered diversions in the Waimea hydrologic unit: Kokee System. | Event ID | File Reference | Tax Map Key | Diversion
Amount (cfs) | Active
(Yes/No) | Verified
(Yes/No) | Riparian
(Yes/No) | Rights Claim
(Yes/No) | |-----------|-------------------------|---------------------|---------------------------|--------------------|----------------------|----------------------|--------------------------| | REG.619.2 | KEKAHA SUGAR | 4-1-4-001:013 | unknown | Yes | Yes | | | | Kumuwela | #1 diversion from unnan | ned ephemeral strea | m to Kokee ditc | h | | | | | REG.614.2 | KEKAHA SUGAR | 4-1-4-001:013 | unknown | Yes | Yes | | | | Kumuwela | #2 diversion from unnan | ned ephemeral strea | m to Kokee ditc | h | | | | | REG.603.2 | KEKAHA SUGAR | 4-1-4-001:013 | unknown | Yes | Yes | | | | Kumuwela | #3 diversion from unnan | ned ephemeral strea | m to Kokee ditc | h | | | | | REG.621.2 | KEKAHA SUGAR | 4-1-4-001:013 | unknown | Yes | Yes | | | | Kumuwela | #4 diversion from unnan | ned ephemeral strea | m to Kokee ditc | h | | | | | REG.615.2 | KEKAHA SUGAR | 4-1-4-001:013 | unknown | Yes | Yes | | | | Kumuwela | #5 diversion from unnan | ned ephemeral strea | m to Kokee ditc | h | | | | Kekaha Agriculture Association (KAA) under an agreement with the Agriculture Development Coorporation (ADC) operates the two ditch systems (Kokee and Kekaha) running south and west from Waimea. The KAA supplies <1 mgd to the Menehune Ditch from the Kekaha Ditch for private use, including taro loi and diversified agriculture. Gay & Robinson operate the Olokeli Ditch that transports water south and east from Waimea. For the years 2010 to 2014, the average water demand for users on the Kekaha irrigation system was 4.08 mgd, while the average water demand for the Kokee irrigation system was 0.58 mgd (Kekaha Agriculture Association, 2015). Information on these diversions is listed in Table 13-2, and their locations are depicted in Figure 13-1. Gay & Robinson have not provided any photos of their diversions and refuse to permit CWRM staff to verify them. Their reported monthly water use from their diversions is currently 35.79 mgd from December 2015 to April 2016. # **Modifications of Ditch Systems and Groundwater Recharge** Following the establishment of instream flow standards, one of the proposed measures to increase streamflow may be to decrease the amount of water diverted from streams. Such a measure has important implications to ground water recharge because it affects the amount of water available for irrigation. The effects of irrigation water on ground water recharge can be analyzed using the water budget equation¹. Engott and Vana (2007) at the USGS conducted a study that estimated each of the water budget components for west and central Maui using data from 1926 to 2004. Components of the water budget include rainfall, fog drip, irrigation, runoff, evapotranspiration, and recharge. Results of the study were separated into six historical periods: 1926-79, 1980-84, 1985-89, 1990-94, 1995-99, and 2000-04. From 1979 to 2004, ground water recharge decreased 44 percent from 693 million gallons per day to 391 million gallons per day (Figure 13-2). The low recharge rate in 2004 coincides with the lowest irrigation and rainfall rates
that were 46 percent and 11 percent lower than those in 1979, respectively. During this period, agricultural lands decreased 21 percent from 112,657 acres in 1979 to 88,847 acres in 2004. Further analysis revealed that a 20 percent decrease in irrigation rate could result in a 9 percent reduction in recharge. A similar study by Izuka et al. (2005) reported that a 34 percent decrease in irrigation rate constituted a 7 percent reduction in recharge in the Lihue basin in Kauai, Hawaii. Droughts, or periods of lower than average rainfall, have been shown to drastically decrease ground water recharge (Figure 13-2). The period of drought that occurred in 1998-2002, during which rainfall was at least 30 percent lower than the average annual rainfall was estimated to reduce recharge by 27 percent in west and central Maui (Engott and Vana, 2007). In the island of Kauai, the drought conditions reduced recharge in Lihue basin by 34-37 percent (Izuka et al., 2005). Even though droughts can have exacerbating effects on ground water recharge, these effects are transient and are usually mitigated by periods of higher than average rainfall (Engott and Vana, 2007). However, prolonged loss in irrigation water caused by decrease in the amount of water diverted at the ditches has greater effects on the long term trends of ground water levels. ¹ Water-budget is a balance between the amount of water leaving, entering, and being stored in the plant-soil system. The water budget method/equation is often used to estimate ground water recharge. - 103 - **Figure 13-3.** Summary of estimated recharge, in million gallons per day, for various land-use and rainfall conditions in the Lihue Basin, Kauai, Hawaii. (Source: Izuka et al., 2005) # **Utilization of Important Agricultural Lands** The Agricultural Lands of Importance to the State of Hawaii (ALISH) were completed by the State Department of Agriculture (HDOA) in 1977, with the assistance of the Soil Conservation Service (SCS), U.S. Department of Agriculture, and the College of Tropical Agriculture, University of Hawaii. Three classes of agriculturally important lands were established for Hawaii in conjunction with the SCS in an effort to inventory prime agricultural lands nationwide. Hawaii's effort resulted in the classification system of lands as: 1) Prime agricultural land; 2) Unique agricultural land; and 3) Other important agricultural land. Each classification was based on specific criteria such as soil characteristics, slope, flood frequency, and water supply. ALISH was intended to serve as a long-term planning guidance for land use decisions related to important agricultural lands. HDOA is currently in the process of developing agricultural incentives based on classifications of Important Agricultural Lands. The Waimea hydrologic unit is comprised of nearly 7.5 percent of agricultural land with 3.0 percent designated as ALISH (Table 13-4, Figure 13-4). **Table 13-4.** Agricultural Lands of Importance to the State of Hawaii and area distributions in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015g) | Density | Area (mi²) | Percent of Unit | |--------------------------|------------|-----------------| | Prime agricultural land | 0.743 | 0.87 | | Unique agricultural land | 0.119 | 0.14 | | Other lands | 1.624 | 1.89 | From 1978 to 1980, HDOA prepared agricultural land use maps (ALUM) based on data from its Planning and Development Section and from SCS. The maps identified key commodity areas (with subclasses) consisting of: 1) Animal husbandry; 2) Field crops; 3) Orchards; 4) Pineapple; 5) Aquaculture; 6) Sugarcane; and Wetlands (Table 13-5). **Table 13-5.** Agricultural land uses and area distributions in the Waimea hydrologic unit. (Source: State of Hawaii, Office of Planning, 2015h) | Density | Area (mi²) | Percent of Unit | |------------------|------------|-----------------| | Grazing | 0.415 | 0.48 | | Vegetables/melon | 0.036 | 0.04 | | Forage and Grain | 0.095 | 0.11 | | Sugarcane | 0.224 | 0.26 | | Wetland | 0.042 | 0.05 | Though both ALISH and ALUM datasets are considerably outdated, many of the same agricultural assumptions may still hold true. The information is presented here to provide the Commission with present or potential noninstream use information (Figure 13-4 and 13-5). When Kekaha Sugar Co. declared bankruptcy in 1999, the State of Hawaii took over their land holdings (former sugarcane land) in southwest Kauai. The Mana Plain region (west-northwest of Waimea town) was given to HDOA to manage. In 2008, the Agriculture Development Corporation (ADC) agreed to operate and maintain the infrastructure of the Kekaha Agriculture Association, a cooperative of lesees that depend on the infrastruct to maintain their agriculture operations. Kekaha Sugar Co. invested heavily in the infrastructure that supported agriculture on these lands (e.g., diversions, ditches, flumes siphons, hydropower, electrical transmission lines, and reservoirs) and the HDOA valued the agricultural products of Kekaha at \$35-50 million. The Waimea uplands parcel (23.532 square miles) was given to DHHL and is one of their largest land holdings. Lands in both regions fall under the important agricultural lands designation and thus it is the desire of both agencies to continue to develop agriculture on them. Of the 12,592 acre portion of state-owned land located in Kekaha (27,720 acres total) assigned to the Agribusiness Development Corporation, most are designated as prime agricultural land due to the excellent growing conditions, inexpensive access to water and available hydropower. Decreasing the amount of water diverted at the ditches affects the amount of water available for the irrigation of crops on these important agricultural lands. The presence of the irrigation systems adds considerable complexity to the Commission's role in weighing instream and noninstream uses. While this is largely due to the transfer of water from one hydrologic unit to another, the importance of the system to agriculture plays a pivotal role in the consideration of economic impacts. In total, the ditch systems consist of many separate intakes, 24 miles of ditch, 50 miles of tunnel, twelve inverted siphons, and numerous small feeders, dams, intakes, pipes, and flumes. Supporting infrastructure includes 62 miles of private roads and 15 miles of telephone lines. The system primarily captures surface water draining the Alakai Marsh and tributaries to the Waimea River primarily owned by the State of Hawaii (Wilcox, 1996). The total acerage under cultivation fluctuates every year, but estimates are provided in Table 13-6. **Table 13-6.** Acerage and crop by year on the Mana Plain for the main lesees of the Kekaha Agriculture Association. (Source: Kekaha Agriculture Association, 2015) *average provided applicable to all years | | Pioneer Hi-Bred | Syngenta | Syngenta | BASF* | BASF* | BASF* | |------|-----------------|-------------|----------|---------------------|--------|--------------| | year | (seed corn) | (seed corn) | (soy) | (seed corn, canola) | (rice) | (cover crop) | | 2010 | 405.10 | 514.95 | 1.84 | 106 | 6 | 300 | | 2011 | 246.37 | 562.82 | 18.62 | 106 | 6 | 300 | | 2012 | 343.77 | 605.15 | 21.35 | 106 | 6 | 300 | | 2013 | | 543.81 | 27.89 | 106 | 6 | 300 | | 2014 | | 420.28 | 24.81 | 106 | 6 | 300 | **Figure 13-4.** Agricultural land use for the Waimea hydrologic unit based on the Agricultural Lands of Importance for the State of Hawaii (ALISH) classification systems. (Source: State of Hawaii, Office of Planning, 2015g) **Figure 13-5.** Designated agricultural land use for the Waimea hydrologic unit based on the Agricultural Land Use Map (ALUM). (Source: State of Hawaii, Office of Planning, 2015h) ### **Diverted Water and Non-Instream Power Production** Energy is generated from two hydropower plants on the Kekaha ditch (Figure 13-9). This energy was necessary to make agriculture viable by powering drainage pumps needed to keep the water table below the rooting depth of the Mana Plain, pressurize the Mana Plain irrigation system, prevent the Pacific Missle Range Facility and the town of Kekaha from flooding, and power pumps that opened up previously inaccessible fields in the Waimea mauka lands to sugarcane cultivation. Mean daily (± standard deviation) power generated by the Waimea (mauka) and Waiawa powerplants from 2010 to 2015 was 432 (±161) kw and 328 (±106) kw, respectively (Kekaha Agriculture Association, 2015). Mean (± standard deviation) daily water used to generate this energy was 24.54 (±5.24) mgd and 19.0 (±3.05) mgd, respectively. Daily energy generated on a monthly timescale from 2010 to 2015 is provided in Figure 13-6. Box-and-whisper plots of daily energy and water usage of the two hydropower plants are provided in Figure 13-7. Energy from these powerplants is being used by the Kawaiele, Kekaha, and Nohili pump stations which keep the brackish water table below rooting depth and prevents flooding in the region (Figure 13-8). Energy is also used to power the pumps for irrigation water distribution. Excess energy generated by hydropower is sold back to Kauai Island Utility Cooperative (KIUC) as depected in Figure 13-9. Mean (± standard deviation) monthly energy sold to KIUC is 65.0% (±16.9%). **Figure 13-6.** Mean daily energy generated by month from the Waimea (Mauka) and Waiawa hydropower plants on the Kekaha Ditch. (Source: Kekaha Agriculture Association, 2015) **Figure 13-7.** Box-and-whisker plots of daily energy generation (left) and daily water usage (right) the Waimea (Mauka) and Waiawa hydropower plants on the Kekaha Ditch. (Source: Kekaha Agriculture Association, 2015) **Figure 13-8.** Area of land between mean sea level (m.s.l.) and 7 feet above m.s.l. in elevation in the Mana Plain, Kauai. (Source: NOAA, Digital Coast Data Request, 2015) **Figure 13-9.** Bar chart of total monthly energy produced and consumed by Kekaha Agriculture Association and their
lessees and the total energy sold to Kauai Island Utility Cooperative. (Source: Kekaha Agriculture Association, 2015) # Irrigation Needs of the Kekaha Service Area The Kekaha Agriculture Association maintains the Kokee and Kekaha ditch systems to supply current lesees with irrigation water, non-lesee farmers with irrigation water, and water needed to support other operations in the Waimea and Kekaha region. While individual water users are not metered, estimates of daily water demands for the largest water users are provided in Figure 13-10. The Kokee ditch system has a design capacity of 55 mgd up to the Puu Lua Reservior and 26 mgd past the reservoir. The Kekaha ditch system has a design capacity of 50 mgd. The Commission funded the development of a GIS-based software program the utilizes the state of Irrigation Water Requirement Estimation Decision Support System, IWREDSS (State of Hawaii, Commission on Water Resource Management, 2015b) was developed by the College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa for the State of Hawaii. IWREDSS is an ArcGIS-based numerical simulation model that estimates irrigation requirements (IRR) and water budget components for different crops grown in the Hawaiian environment. The model accounts for different irrigation application systems (e.g., drip, sprinkler, flood), and water application practices (e.g., field capacity versus fixed depth). Model input parameters include rainfall, evaporation, soil water holding capacities, depth of water table, and various crop water management parameters including length of growing season, crop coefficient¹, rooting depth, and crop evapotranspiration. Calibration and validation of the model was based on the crop water requirement data for different crops from the Hawaii region United States Department of Agriculture (USDA), Natural Resource Conservation Service (NRCS) Handbook 38 (NRCS-USDA, 1996). Relative errors between the net irrigation requirements (NIR) estimated by the model and those estimated by NRCS range from less than 1 percent to a 26 percent overestimate. This difference may be attributed to the general nature of the technique NRCS used in estimating NIR. Results of the regression analysis indicate a good correlation ($R^2 = 0.97$) between the two techniques; however, the NIR calculations by NRCS were consistently 8 ⁻ ¹ Crop coefficient is an empirically derived dimensionless number that relates potential evapotranspiration to the crop evapotranspiration. The coefficient is crop-specific. percent higher than those of the IWREDSS model. Overall, the model is an appropriate and practical tool that can be used to assess the IRR of crops in Hawaii. **Figure 13-10.** Map of the Kekaha Agriculture Assocation Service Area along with the Department of Hawaiian Home Lands (DHHL) Waimea parcel. (Source: State of Hawaii, Department of Hawaiian Homelands, 2011; State of Hawaii Office of Planning, 2004c; State of Hawaii, Commission on Water Resource Management, 2015f) **Figure 13-11.** Mean daily irrigation water usage for primary users of the Kekaha (top) and Kokee (bottom) irrigation systems from 2010 to 2014 (Source: Kekaha Agriculture Association, 2015). *values estimated Understanding that water demand is highly site, weather, application, and crop dependent, IWREDSS can still provide a useful approximation of water needs. According to the simulation results, the IRR for the most common crop currently grown on the Mana plain (seed corn) is approximately 3900 gallons per acre per day (Table 13-7). As expected, IRR is lowest when a cover crop is used between crops. The model calculates IRR based on long-term rainfall records available at the weather stations located nearest to the fields. Thus, the estimated IRR represents an average value for average weather conditions as opposed to wet or dry year conditions. However, the estimated IRR for the relative drought year frequencies could be extrapolated to represent the highest demand scenarios. **Table 13-7.** Mean drip rrigation demand estimates for seed corn in the Kekaha Ditch service area based on IWREDSS scenarios modeled for two soil management techniques and two cover crop options given a 10 ft depth to water table. Irrigation Requirement (IRR) value in gallons per acre per day for the 1 in 5 year drought scenario is provided. | Scenario | | straight row
(SR) and/or
cover residual
(CR) | IRR
(gallons per acre
per day) | Mean annual irrigation demand (in/acre) for drought frequency | | | |----------|--------------------|---|--------------------------------------|---|------------------|-----------------| | | soil
management | | | 1 in 5
(20%) | 1 in 10
(10%) | 1 in 20
(5%) | | 1 | Poor | SR+CR | 3912 | 52.59 | 54.10 | 55.25 | | 2 | Poor | SR | 3924 | 51.75 | 54.24 | 55.36 | | 3 | Good | SR+CR | 3874 | 52.08 | 53.67 | 54.86 | | 4 | Good | SR | 3898 | 52.40 | 53.94 | 55.10 | The KAA lesees have provided estimated water demand for their lands based on crop acerage grown from crop cycles 2009 to 2014. Pioneer Hi-Bred estimated water use from 2010 to 2014 was an average of 3,999.04 gallons per acre per day while Syngenta estimated water use was 3287.67 gallons per acre per day for corn and 2465.75 gallons per acre per day for soy (Kekaha Agriculture Association, 2015). BASF estimated their seed corn production used 2785.4 gallons per acre per day, while their rice used 21,877 gallons per acre per day and their other leased lands (uncleared acerage, native grasses, cover crop) used 260.4 gallons per acre per day (Kekaha Agriculture Association, 2015). #### Olokele Ditch System Gay and Robinson operate a diversion and ditch system that removes water from the Olokele tributary of the Waimea River, originally for sugar cane production and domestic use but now for hydropower, pasture and some agriculture use. The amount of water used for hydropower and the amount of hydropower generated has not been reported. The diversion on Olokele Stream was The USGS gaged ditch flow for many years on the Olokele Ditch at tunnel No. 12 (station 16036000) which is 2 miles from the intake and provides reliable information regarding total water diverted. There was also a gaging station below the diversion for one year (station 16034000) and provides some idea of how much water was left in the stream below the diversion. For that year, approximately 90% of total stream flow was diverted, assuming the intervening reach is not gaining due to groundwater. The mean annual flow in the ditch from 1910 to 1917 ranged from 40.65 mgd to 50.49 mgd. In 2009, Gay and Robinson declared that they formalized an agreement to lease approximately 3,500 acres of land to Agrigenetics, Inc. utilizing approximately 17.375 mgd from the Koula and/or Olokele Ditch systems, with the remainder for hydropower and agricultural uses. Current water use reporting states that Gay and Robinson are diverting approximately 36 mgd from the Olokele Stream. At this time, it is unclear how much water is being used for agriculture. **Figure 13-12.** Mean daily flow in the Olokele Ditch at Tunnel No. 12 (USGS station 16036000) and in Olokele Stream 0.25 mi downstream of diversion (USGS station 16034000) from July 1915 to June 1916 (Source: USGS). ### **Proposed KIUC West Kauai Energy Project** Kauai Island Utility Cooperative, in cooperation with DHHL, is in the planning phases to develop renewable energy projects that are compatible with agriculture (State of Hawaii-DHHL, 2011). Such a project would have direct benefits for DHHL and the larger community in terms of energy security, rental income, and environmental benefits. One such project, pumped storage, is a method of storing energy made available during peak production (daytime for solar) and shifting it to peak demand (evening). Pumped storage necessitates two reservoirs, using energy to pump water uphill and generating energy as water is released downhill. KIUC has identified two sites in the region that could potentially be developed for pumped storage: Puu Lua Reservoir-Haeleele Reservoir and Puu Opae Reservoir-Mana Reservoir. The Puu Lua Reservoir is on DLNR-owned land while the Puu Opae Reservoir is on DHHL-owned land. The development of pumped storage would have ancilliary benefits to the region by rehabilitating reservoirs and providing long-term maintenance, improving and maintaining access roads in the region, and potentially moderninzing the Kokee ditch system. In 2016, both options were in the 20% engineering phase, with final decisions regarding which system to fund likely in early 2016. As of 2021, KIUC has moved forward with the Puu Opae hydropower project, which includes the rehabilitation of three reservoirs (Puu Lua, Puu Opae, and Mana reservoirs), two penstocks (one between the Puu Moi divide and a powerhouse at the Puu Opae Reservoir; one between the Puu Opae Reservoir and a powerhouse/pumphouse at the Mana Reservoir), and associated roads and transmission lines (Figure 13-13). Following the 2013 petition to amend instream flow standards by Poai Wai Ola/West Kauai Watershed Alliance, Commission staff and the Commission's consultant conducted an assessment of best available information to assess the hydrology, instream values, and non-instream uses of water from the Waimea Watershed. Following two years of intensive study, the parties agreed to work towards mediating a resolution to support the concerns of the community and protect instream values, while providing KAA, DHHL, and KIUC the potential to develop agriculture and energy for the island of Kauai. In support of the mediation effort, staff used hydrological data from 1919 to 1925 to model the availability of water for non-instream uses in the Kokee Irrigation System. #### Modeled water for non-instream uses in the Kokee Irrigation System Mean
daily flow from Kauaikinana (USGS 16012000), Kawaikoi (USGS 16010000), and Waiakoali (USGS 16011000) for dates between 07/01/1919 to 12/31/1925 were utilized with gap-filled data based on modeled flows for overlapping periods of record. USGS Station 16010000 on Kawaikoi Stream is the only continuous long-term (1919-present) record among these streams. While Cheng (2020) identified a significant (p<0.05) negative trend in mean and median (Q₅₀) flow for USGS 16010000 from 1961 to 2019, no significant negative trend was identified for Q₇₀ or Q₉₀ for this period of record. Compared to the 1919 to 1925 period, low-flow duration values for the 1961 to 2019 period were only -6.5%, -4.1%, -1.7%, -2.4%, and -9.1% for the Q₆₀, Q₇₀, Q₈₀, Q₉₀, and Q₉₅ magnitude flows, respectively. In the process of developing interim instream flow standards, the Waimea Watershed Agreement established that during low-flow periods, two-thirds of each stream's flow would remain in the respective stream. Streamflow greater than the low-flow set point would be available for non-instream usage with an instream flow standard of 0.6 mgd, 4.0 mgd, and 0.8 mgd for Kauaikinana, Kawaikoi, and Waiakoali, respectively. In the final mediated agreement, the set points were 1.2 mgd, 6.4 mgd, and 1.3 mgd for Kauaikinana, Kawaikoi, and Waiakoali, respectively. Commission staff simulated the results of the proposed mediated solution without assuming any contribution from Kokee Stream. No contribution from Kokee stream could be simulated because streamflow is relatively small, no continuous record gaging data are available for this stream, and only flows greater than 1.2 mgd would be available to be diverted. Simulated daily results for the 6.5 years are provided in Figure 13-14 with flow statistics available in Table 13-8. Statistics do not reflect the maximum capacity of individual diversions, rather the maximum capacity of the Kokee Ditch, thus the flow remaining in the stream in excess of the diversion capacity is not reflected in the downstream flow statistics simulated for the IIFS. **Figure 13-14.** Mean daily simulated diverted flow into Kokee Ditch after contributions from Waiakoali Stream, Kawaikoi Stream, and Kauaikinana Stream (grey dots), 30-day moving average (black line), and the 11 mgd reference (red line) from 07/01/1919 to 12/31/1925. **Table 13-8.** Flow duration statistics (in millions of gallons per day, mgd) and mean daily flow (MDF) for Kokee Ditch, Waiakoali Stream, Kawaikoi Stream, and Kauaikinana Stream, and the stream flow below each diversion given the interim instream flow standards agreed upon by the Waimea Watershed Agreement based on the simulation of available water from 07/01/1919 to 12/31/1925. [note: statistics for streamflow below diversion do not reflect the flow remaining in the stream in excess of the maximum diversion capacity, which occurs during flows greater than Q50 and cannot be simulated] | | Waiakoali | | Kawaikoi | | Kauaikinana | | Kokee Ditch | | |-------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|------------------|--| | Percentile | at USGS
16011000 | Below
diversion | at USGS
16010000 | Below
diversion | at USGS
16012000 | Below
diversion | at USGS 16014000 | | | Q ₅₀ | 2.13 | 0.80 | 8.40 | 4.00 | 1.29 | 0.60 | 6.80 | | | \mathbf{Q}_{60} | 1.87 | 0.80 | 6.40 | 4.00 | 1.03 | 0.60 | 4.14 | | | \mathbf{Q}_{70} | 1.49 | 0.80 | 4.98 | 3.32 | 0.77 | 0.51 | 2.91 | | | \mathbf{Q}_{80} | 1.23 | 0.80 | 3.81 | 2.54 | 0.60 | 0.40 | 2.23 | | | \mathbf{Q}_{90} | 0.90 | 0.60 | 2.78 | 1.85 | 0.50 | 0.33 | 1.54 | | | \mathbf{Q}_{95} | 0.71 | 0.47 | 2.33 | 1.55 | 0.30 | 0.20 | 1.20 | | | MDF | 3.34 | | 24.29 | | 5.40 | | 12.73 | | ## **Bibliography** - Amear, T., Chisholm, I., Beecher, H., Locke, A., and 12 other authors. (2004). Instream flows for riverine resource stewardship, revised edition. Instream Flow Council, Cheyenne, WY, 268 p. - Anthony, S.S., Hunt, Jr., C.D., Brasher, A.M.D., Miller, L.D., and Tomlinson, M.S. (2004). Water quality on the Island of Oahu, Hawaii, 1999-2001, U.S. Geological Survey Circular 1239, 37 p. - Chun, R.K. (1952). Flood in August 1950 in the Waimea Area Kauai, Hawaii. U.S. Department of the Interior, U.S. Geological Survey Water -Supply Paper 1137-c. - Coral Reef Assessment and Monitoring Program. (2007). Maui Watershed Information. Hawaii Institute of Marine Biology, Hawaii Coral Reef Assessment and Monitoring Program. Retrieved January 2008, from http://cramp.wcc.hawaii.edu/Watershed Files/maui/WS Maui.htm. - Cowardin, L.M., Carter, V., Golet, F.C., and LaRoe, E.T. (1979). Classification of wetlands and deeper habitats of the United States, U.S. Fish and Wildlife Service, Office of Biological Services, FWS/OBS-79/31, 131 p. - Cheng, C.L. (2020). Low-Flow Characteristics of Streams from Wailua to Hanapepe, Kauai, Hawaii. U.S. Geological Survey Scientific Investigations Report 2020-5128. 57 p. - DHM, Inc., Bishop Museum, Public Archaeology Section, Applied Research Group, and Moon, O'Connor, Tam and Yuen. (1990). Hawaiian fishpond study, Islands of Hawaii, Maui, Lanai and Kauai: Prepared for State of Hawaii, Office of State Planning, Coastal Zone Management Program, 196 p. - Ego, K. (1956). Life history of fresh water gobies. Project no. F-4-R. Fresh Water Game Fish Management Research, Department of Land and Natural Resources, Territory of Hawai'i, Honolulu, 24 p. - Ekern, P.C., and Chang, J-H. (1985). Pan evaporation: State of Hawaii, 1894-1983. Hawaii Department of Land and Natural Resources, Division of Water and Land Development, Report R74, p.1-3, 38-48. - Engott, J.A., and Vana, T.T. (2007). Effects of Agricultural Land-Use Changes and Rainfall on Ground-Water Recharge in Central and West Maui, Hawai'i, 1926–2004: U.S. Geological Survey Scientific Investigations Report 2007–5103, 56 p. - Englund, R., and Filbert, R. (1997). Discovery of the native stream goby, *Lentipes concolor*, above Hawaii's highest waterfall, Hiilawe Falls. Bishop Museum Occasional Papers, v. 49, p. 62-64. - Englund, R., Polhemus, D. A., and Preston, D. J. (2000). Assessment of the impacts of rainbow trout predation on native aquatic invertebrate species within Kokee State Park streams, Kauai, Hawaii. Bishop Museum Technical Report 18. - Federal Emergency Management Agency. (2014). FEMA Flood Hazard Zones. Retrieved August 2015, from Hawaii State GIS Web site: http://hawaii.gov/dbedt/gis/data/dfirm_metadata.htm - Fitzsimons, J.M., and Nishimoto, R.T. (1990). Territories and site tenacity in males of the Hawaiian stream goby *Lentipes concolor* (Pisces: Gobbidae). Ichthyological Exploration of Freshwaters, v. 1, p. 185-189. - Giambelluca, T.W., Nullet, M.A., Ridgley, M.A., Eyre, P.R., Moncur, J.E.T., and Price, P. (1991). Drought in Hawaii. State of Hawaii, Department of Land and Natural Resources, Division of Water and Land Development, Report R88, 232 p. - Giambelluca, T.W., and Nullet, D. (1992). Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii. Climate Research, 1, p. 207-2126. - Giambelluca, T.W., Chen, Q., Frazier, A.G., Price, J.P., Chen, Y.-L., Chu, P.-S. Eischeid, J.K., and Delparte D.M. (2013). Online Rainfall Atlas of Hawaii. Bulletin of the American Meteorological Society, 94, 313-316. - Giambelluca, T.W., Shuai, X., Barnes, M.L., Alliss, R.J., Longman, R.J., Miura, T., Chen, Q., Frazier, A.G., Mudd, R.G., Cuo, L., Businger, A.D. (2014). Evapotranspiration of Hawai'i. Final report submitted to the U.S. Army Corps of Engineers—Honolulu District, and the Commission on Water Resource Management, State of Hawai'i. - Gingerich, S.B. (1999a). Ground water and surface water in the Haiku area, East Maui, Hawaii: U.S. Geological Survey Water-Resources Investigations Report 98-4142, 29 p. - Gingerich, S.B. (1999b). Ground-water occurrence and contribution to streamflow, Northeast Maui, Hawaii: U.S. Geological Survey Water-Resources Investigations Report 99-4090, 70 p. - Gingerich, S.B. and Oki, D.S. (2000). Ground Water in Hawaii. U.S. Geological Survey Fact Sheet 126-00. - Gingerich, S.B. (2005). Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii. U.S. Geological Survey, Scientific Investigations Report 2004-5262, 72 p. - Gingerich, S.B., Yeung, C.W., Ibarra, T.N., and Engott, J.A. (2007). Water use in wetland kalo cultivation in Hawai'i: U.S. Geological Survey Open-File Report 2007-1157, 68 p. [http://pubs.usgs.gov/of/2007/1157/]. Version 1.0, July 24, 2007, Revised Figure 36, p. - Grady, C. E. (2006). Volume and Petrologic Characteristics of the Koloa Volcanics, Kauai, Hawaii. Master of Science in Geology and Geophysics. University of Hawaii Manoa - Handy, E.S.C., Handy, E.G., and Pukui, M.K. (1972). Native Planters in Old Hawaii: Their Life, Lore, and Environment. Bishop Museum Press, Honolulu, Hawaii: Bernice P. Bishop Museum Bulletin 233, 676 p. - HWMO. Hawaii Wildfire Management Organization. (2013). Hawaii State Wildfire History Dataset. http://gis.ctahr.hawaii.edu - Izuka, S.K., Oki, D.S., and Chen, C. (2005). Effects of irrigation and rainfall reduction on ground-water recharge in the Lihue Basin, Kauai, Hawaii: U.S. Geological Survey Scientific Investigations Report 2005-5146, 48 p. - Jacobi, J.D. (1989). Vegetation Maps of the Upland Plant Communities on the Islands of Hawai'i, Maui, Moloka'i, and Lana'i, Technical Report Number 68. University of Hawaii at Manoa, Honolulu, Hawaii: Cooperative National Park Resources Studies Unit. - Juvik, J.O., and Nullet, D. (1995). Relationships between rainfall, cloud-water interception, and canopy throughfall in a Hawaiian montane forest. In Hamilton, L.S., Juvik, J.O., and Scatena, F.N., (eds.), Tropical montane cloud forests: New York, Springer-Verlag, p. 165-182. - Kekaha Agriculture Association (2015). Response to Comission's May
11, 2015 Letter. Schlack Ito LLC, 24 July 2015. - Kaiser, B., Krause, N., Mecham, D., Wooley, J., and Roumasset, J. (n.d.). Environmental valuation and the Hawaiian economy: Introduction and executive summary, 140 p. Retrieved January 2008, from http://www.uhero.hawaii.edu/workingpaper/HawaiiEnviroEvaluation.pdf - Kido, M. (1996). Recovery processes in Hawaiian streams, p. 76-93. In: Will stream restoration benefit freshwater, estuarine, and marine fisheries?: Proceedings of the October, 1994 Hawaii stream restoration symposium. State of Hawaii Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu. - Kikuchi, W.K. (1973). Hawaiian aquacultural system. Doctoral thesis, University of Arizona. Manuscript on file in the Bernice P. Bishop Museum Library, Honolulu. - Kumu Pono Associates. (2001a). Wai o ke ola: He wahi moʻolelo no Maui Hikina, A collection of native traditions and historical accounts of the lands of Hāmākua Poko, Hāmākua Loa and Koʻolau, Maui Hikina (East Maui), Island of Maui: Prepared for East Maui Irrigation Company, 544 p. - Kumu Pono Associates. (2001b). Wai o ke ola: He wahi moʻolelo no Maui Hikina, Oral history interviews with families of Hāmākua Poko, Hāmākua Loa and Koʻolau, East Maui: Prepared for East Maui Irrigation Company, 512 p. - Lau, L. S. and Mink, J. F. (2006). Hydrology of the Hawaiian Islands. Honolulu: University of Hawaii Press, 274 p. - Macdonald, G. A., Davis, D. A. and Cox, D. C. (1960). Geology and groundwater resources of the island of Kauai, Hawaii. Haw. Div. Hydrog. Bull. 13, 212 p. - McRae, M.G. (2007). The potential for source-sink population dynamics in Hawaii's amphidromous species, p. 87-98. In: N.L. Evenhuis and J.M. Fitzsimons (ed.), Biology of Hawaiian streams and estuaries: Proceedings of the symposium on the biology of Hawaiian streams and estuaries. Bishop Museum Bulletin in Cultural and Environmental Studies, v. 3, Honolulu. - National Park Service, Hawaii Cooperative Park Service Unit. (1990). Hawaii Stream Assessment: A Preliminary Appraisal of Hawaii's Stream Resources: Prepared for State of Hawaii, Commission on Water Resource Management, Report R84, 294 p. - National Park Service. (2007). Haleakala National Park. Retrieved January 2008, from http://www.nps.gov/hale/. - Nishimoto, R.T., and Kuamoo, D.G.K. (1991). The occurrence and distribution of the native goby (*Lentipes concolor*) in Hawai'i Island streams with notes on the distribution of the native goby species, p. 77-95. In: W. Devick (ed.), New directions in research, management and conservation of Hawaiian freshwater stream ecosystems: Proceedings of the 1990 symposium on stream biology and - fisheries management. State of Hawaii Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu. - Nishimoto, R.T., and Kuamoo, D.G.K. (1997). Recruitment of goby postlarvae into Hakalau stream, Hawai'i Island. Micronesica, v. 30, p. 41-49. - Nullet, D. (1987). Energy sources for evaporation on tropical islands. Physical Geography, 8: p. 36-45. - Nullet, D., and Giambelluca, T.W. (1990). Winter evaporation on a mountain slope, Hawaii. Journal of Hydrology: 112, p. 257-265. - Oki, D. (2003). Surface Water in Hawaii. U.S. Geological Survey, Fact Sheet 045-03. - Oki, D. (2004). Trends in Streamflow Characteristics at Long-Term Gaging Stations, Hawaii. U.S. Geological Survey, Scientific Investigations Report 2004-5080, 120 p. - OmniTrak Group Inc. (2007). Hawaii State Parks Survey: Prepared for Hawaii Tourism Authority, 98 p. Retrieved February 2008, from http://www.hawaiitourismauthority.org/documents upload path/reports/HTAPRO-Report-12-01-2007.pdf - Pacific Disaster Center. (2007). Natural Hazards: Flood. Retrieved March 2008, from http://www.pdc.org/iweb/flood.jsp?subg=1. - PBR Hawaii. (2004). Maui Island Plan: Prepared for State of Hawaii, Department of Hawaiian Home Lands, 340 p. - Penn, D.C. (1997). Water and energy flows in Hawai'i taro pondfields: Honolulu, Hawaii, University of Hawaii at Manoa, Ph.D. dissertation, 376 p. - Radtke, R.L., Kinzie III, R.A., and Folsom, S.D. (1988). Age at recruitment of Hawaiian freshwater gobies. Environmental Biology of Fishes, v. 23, p. 205-213. - Scholl, M.A., Gingerich, S.B., and Tribble, G.W. (2002). The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii. Journal of Hydrology, 264 (2002), p. 170-184. - Scott, J.M., Mountainspring, S., Ramsey, and Kepler, C.B. (1986). Forest Bird Communities of the Hawaiian Islands: Their Dynamics, Ecology and Conservation. Studies in Avian Biology, No. 9, 431 p. - Shade, P.J. (1999). Water budget of East Maui, Hawaii, U.S. Geological Survey Water Resources Investigations Report 98-4159, p. 36. - Sherrod, D.R., Sinton, J.M., Watkins, S. E., and Brunt, K.M. (2007). Geological Map of the State of Hawaii: U.S. Geological Survey Open-File Report 2007-1089, 83 p., 8 plates, scales 1:100,000 and 1:250,000, with GIS database. U.S. Geological Survey. - State of Hawaii, Commission on Water Resource Management. (2005a). Commission on Water Resource Management surface-water hydrologic units: A management tool for instream flow standards. Department of Land and Natural Resources, Commission on Water Resource Management, Report PR-2005-01, 111 p. - State of Hawaii, Commission on Water Resource Management. (2005b). Hawaii Drought Plan 2005 Update. State of Hawaii, Department of Land and Natural Resources, Division of Water and Land Development, p. 1-1 to 5-4. - State of Hawaii, Commission on Water Resource Management. (2007). Hawaii Water Plan: Water Resource Protection Plan, Public review draft. Department of Land and Natural Resources, Commission on Water Resource Management, 557 p. - State of Hawaii, Commission on Water Resource Management. (2015a). Irrigation Ditch GIS Layer [Database file]. Retrieved July 2015. - State of Hawaii, Commission on Water Resource Management. (2015b). Water Management Software to Estimate Crop Irrigation Requirement for Consumptive Use Permitting In Hawaii. Department of Land and Natural Resources, 61 p. - State of Hawaii, Commission on Water Resource Management. (2015c). Surface-water hydrologic unit GIS data layer. Department of Land and Natural Resources, Commission on Water Resource Management. Retrieved July 2015. - State of Hawaii, Commission on Water Resource Management. (2015d). Well index database [Database file]. Retrieved July 2015. - State of Hawaii, Commission on Water Resource Management. (2015e). Diversion GIS Layer [Database file]. Retrieved July 2015. - State of Hawaii, Commission on Water Resource Management. (2015f). Kekaha Service Area [GIS data file]. Retrieved October 2015, from 2008 Agriculture Water Use and Development Plan. - State of Hawaii, Department of Hawaiian Homelands. (2011). West Kauai (Waimea, KEkaha, Hanapepe) Regional Plan. - State of Hawaii, Department of Health, Environmental Planning Office. (1987). Water Quality Standards Map of the Island of Maui [map]. Retrieved July 2015, from http://hawaii.gov/health/environmental/water/cleanwater/wqsmaps/index.html. - State of Hawaii, Department of Health. (2004). Amendment and Compilation of Chapter 11-54, Hawaii Administrative Rules. Retrieved July 2015from http://hawaii.gov/health/about/rules/11-54.pdf. - State of Hawaii, Department of Health, Environmental Planning Office. (2001). Hawaii's Water Quality Standards: A Public Guide [brochure]. Retrieved July 2015 from http://hawaii.gov/health/environmental/env-planning/wqm/wqsbrochure.pdf. - State of Hawaii, Department of Health, Environmental Planning Office. (2004). Final 2004 List of Impaired Waters in Hawaii Prepared Under Clean Water Act §303(d). Retrieved January 2008 from http://hawaii.gov/health/ environmental/env-planning/wqm/wqm.html. - State of Hawaii, Department of Health, Environmental Planning Office. (2007). 2006 State of Hawaii Water Quality Monitoring and Assessment Report: Integrated Report to the U.S. Environmental Protection Agency and The U.S. Congress Pursuant To Sections §303(D) and §305(B) Clean Water - Act (P.L. 97-117). Retrieved January 2008 from http://hawaii.gov/health/environmental/env-planning/wqm/wqm.html. - State of Hawaii, Division of Aquatic Resources. (1993). Native stream animals [Brochure]. - State of Hawaii, Division of Aquatic Resources. (2015). Point-quadrat survey database. Accessed October 2015. - State of Hawaii, Division of Forestry and Wildlife. (2008a). Hawaii Forest Reserve System. Retrieved July 2015, from http://www.state.hi.us/dlnr/dofaw/frs/page2.htm. - State of Hawaii, Division of Forestry and Wildlife. (2008b). Watershed Partnership Program. Retrieved July 2015, from http://www.state.hi.us/dlnr/dofaw/wpp/index.html - State of Hawaii, Office of Planning. (1996). Stream gauges [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/strmgage.htm - State of Hawaii, Office of Planning. (1999). Parks [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/parks.htm - State of Hawaii, Office of Planning. (2002a). Elementary school districts [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Data Server. - State of Hawaii, Office of Planning. (2002b). Hunting areas [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/huntareas.htm - State of Hawaii, Office of Planning. (2002c). Na Ala Hele state trails and access system [GIS data file]. Retrieved December 2007, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/nahtrails.htm - State of Hawaii, Office of Planning. (2002d). Public school locations [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/pubschools.htm - State of Hawaii, Office of Planning. (2003). National wetlands inventory [GIS data file].
Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/wetlnds.htm - State of Hawaii, Office of Planning. (2004a). Coastal resources [GIS data file]. Retrieved December 2007, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/cstrsrc.htm - State of Hawaii, Office of Planning. (2004b). Critical habitat [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/criticalhab.htm - State of Hawaii, Office of Planning. (2004c). Ditches [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/ditches.htm - State of Hawaii, Office of Planning. (2004d). Vegetation [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/veg.htm - State of Hawaii, Office of Planning. (2004e). 500 foot contours [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/cntrs500.htm - State of Hawaii, Office of Planning. (2005). Division of Aquatic Resources (DAR) stream [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/streams.htm - State of Hawaii, Office of Planning. (2007b). Reserves [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/reserves.htm - State of Hawaii, Office of Planning. (2008). Conservation District Subzones [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/cdsubzn.htm - State of Hawaii, Office of Planning. (2015a). Dams [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/dams.htm - State of Hawaii, Office of Planning. (2015b). Aquifers [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/dlnraq.htm - State of Hawaii, Office of Planning. (2015c). Solar radiation [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/solarad.htm - State of Hawaii, Office of Planning. (2015d). State land use district [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/slud.htm - State of Hawaii, Office of Planning. (2015e). Water Quality Classifications [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/classwater.htm - State of Hawaii, Office of Planning. (2015f). GAP Land Cover Analysis [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: ftp://ftp.gap.uidaho.edu/products/Hawaii.zip - State of Hawaii, Office of Planning. (2015g). ALISH [GIS data file]. Retrieved October 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/alish.htm - State of Hawaii, Office of Planning. (2015h). ALUM [GIS data file]. Retrieved October 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/alum.htm - State of Hawaii, Office of Planning. (2015i). Areas of threatened and endangered plants [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/reserves.htm - State of Hawaii, Office of Planning. (2015j). Historic land divisions (Ahupuaa) for the island of Maui [GIS data file]. Retrieved December 2007, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/histlanddiv.htm - State of Hawaii, Office of Planning. (2015k). C-CAP Land Cover Analysis: Impervious Surface and Land Cover Data [GIS data file]. National Oceanic and Atmospheric Administration, Coastal Services Center. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: ftp://ftp.gap.uidaho.edu/products/Hawaii.zip - State of Hawaii, Office of Planning. (2015l). census blocks [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://files.hawaii.gov/dbedt/op/gis/data/blocks10.htm - State of Hawaii, Office of Planning. (2015m). Soils [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/soils.htm - State of Hawaii, Office of Planning. (2015n). Wetlands [GIS data file]. Retrieved July 2015, from Hawaii Statewide GIS Program Web site: http://hawaii.gov/dbedt/gis/wetlands.htm - State of Nevada, Department of Conservation and Natural Resources, Division of Water Resources. (n.d.). Water words dictionary: Technical water, water quality, environmental, and water-related terms. Retrieved February 2008, from http://water.nv.gov/WaterPlanning/dict-1/ww-dictionary.pdf - Stearns, H.T. and MacDonald, G.A. (1942). Geology and Ground-Water Resources of the Island of Maui, Hawaii. [Hawaii Division of Hydrography, Bulletin 7]. [In cooperation with the Geological Survey, United States Department of the Interior.] - Trust for Public Land. (1998). East Maui resource inventory: Prepared for National Park Service, Rivers, Trails, and Conservation Assistance Program, with the assistance of Bay Pacific Consulting, 101 p. - University of Hawaii. (2003). Drought Risk and Vulnerability Assessment and GIS Mapping Project. State of Hawaii, Department of Land and Natural Resources, Division of Water and Land Development, 157 p. - U. S. Department of Agriculture, Natural Resources Conservation Service, Conservation Engineering Division. (1986). Appendix A: Hydrologic Soil Groups. Urban Hydrology for Small Watersheds. (Technical Release 55.) Retrieved December 26, 2007 from http://www.info.usda.gov/CED/ftp/CED/tr55.pdf - U.S. Department of Agriculture, Soils Conservation Service. [In cooperation with The University of Hawaii Agriculture Experiment Station.] (1972). Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii. Washington, DC: U.S. Government Printing Office. - U.S. Environmental Protection Agency. (2008). "Impaired Waters and Total Maximum Daily Loads." Retrieved April 23, 2008 from http://www.epa.gov/owow/tmdl/intro.html - U.S. Environmental Protection Agency, Region 9, and State of Hawaii, Department of Health. (2002). Revisions to total maximum daily loads for the Ala Wai Canal, Island of Oahu, Hawaii. Retrieved February 2008, from http://hawaii.gov/health/environmental/env-planning/wqm/awtmdlfinal.pdf - U.S. Geological Survey. (1996). Digital raster graphics (DRG) data. Retrieved July 2015, from http://data.geocomm.com/drg/index.html. - U.S. Geological Survey. (2001). Digital elevation model (DEM) 10 meter. Retrieved July 2015, from http://data.geocomm.com/dem/. - U.S. Geological Survey. (2007). Geologic Map of the State of Hawaii. [With GIS database.] (Open File Report 2007-1089). Reston, VA: D.S. Sherrod, J.M. Sinton, S.E. Watkins, and K.M. Brunt. - Wilcox, C. (1996). Sugar water: Hawaii's plantation ditches: Honolulu, University of Hawaii Press, p. 191. - Wilson Okamoto & Associates, Inc. (1983). Instream Use Study, Windward Oahu: Prepared for State of Hawaii, Division of Water and Land Development, Report R68, 154 p. Ziegler, A.C. (2002). Hawaiian natural history, ecology, and evolution. Honolulu: University of Hawaii Press, 477 p. ## 14.0 Appendix Appendix A. Parham et al. (2008). Waimea River, Kaua'i. In: Atlas of Hawaiian Watersheds & Their Aquatic Resources. State of Hawaii, Department of Land and Natural Resources, Division of Aquatic Resources. Watershed Code: 24004. pp. 485-498. Appendix B. Investigation of Kōke'e and Kekaha Ditch Irrigation Systems, Waimea, Kaua'i, Hawai'i. (2016). State of Hawai'i Commission on Water Resource Management. Prepared by Element Environmental, LLC. Appendix C. Higashi, G.R. and Parham, J.E. (2016). Impacts of Water Releases on Stream Habitat and Stream Biota of Waimea River, Kauai using the High Definition Stream Survey (HDSS) and High Definition Fish Survey (HDFS) Techniques. Project Report. State of Hawaii, Department of Land and Natural Resources, Division of Aquatic Resources. Appendix D. Strauch, A.M. (2016) Impacts of Wamea Trial Flow Release on the instream hydrology and freshwater habitat. State of Hawaii, Commission on Water Resource Management, Honolulu, HI. 11 p. # **APPENDIX C** April 25, 2017 Memorandum from DHHL DAVID Y, IGE GOVERNOR STATE OF BAWAII JOBIE M. K. MASAGATANI CHAIRMAN HAWAHAN HOMES COMMISSION WILLIAM J. AILA, JR. DEPUTY TO THE CHAIRMAN SHAN S. TSUTSUI TT GOVERNOR STATE OF HAWAII ## STATE OF HAWAII DEPARTMENT OF HAWAIIAN HOME LANDS P. O. BOX 1879 HONOLULU, HAWAII 96805 April 25, 2017 #### MEMORANDUM TO: The Honorable Suzanne D. Case, Chairperson Commission on Water Resource Management FROM: Jobie M. K. Masagatani, Chairman Hawaiian Homes Commission SUBJECT: Modified Petition for Reservation of surface water of 6.903 Million Gallons Per Day originating from the watershed of, and tributary to, the Waimea River and diverted by the Kōke'e and Kekaha Ditch Systems (including water originating in Waikoali, Kawaikōī, Kauaikinana, and Kōke'e Streams and other tributaries of the Waimea River) for use in the Waimea, Kaua'i Hawaiian Home Lands #### I. INTRODUCTION & BACKGROUND In accordance with the Mediation Agreement for the Waimea Watershed Area ("Mediation Agreement") dated April 18, 2017 and approved that day by the Commission on Water Resource Management ("CWRM"), the Department of Hawaiian Homes Lands ("DHHL" or the "Department") hereby submits to the CWRM this Modified Petition for Reservation of surface water of 6.903 Million Gallons Per Day ("MGD") originating from the watershed of, and tributary to, the Waimea River and diverted by the Kōke'e and Kekaha Ditch Systems (including water originating in Waikoali, Kawaikōī, Kauaikinana, and Kōke'e Streams and other tributaries of the Waimea River) for use in the Waimea, Kaua'i Hawaiian Home Lands ("Modified Reservation Petition"). This Modified Reservation Petition carries out the Department's trust obligation to its
beneficiaries by helping to fulfill the goals of the Hawaiian Homes Commission Act ("HHCA") on these lands and flows from a number of actions by the Hawaiian Homes Commission ("HHC") and the CWRM related to waters tributary to the Waimea River. The relevant procedural background is discussed below. At its January 15, 2013, meeting the HHC unanimously approved item G-2, which among other actions authorized the Chairman to "[f]ormally request a Water Reservation from the Commission on Water Resource Management to adequately reserve water for current and foreseeable development and use of Hawaiian home lands in Waimea, Kauai (State Water Code §174C-101(a).)." This authorization is attached hereto as *Exhibit 1*. On July 22, 2014, the HHC adopted a Water Policy Plan ("WPP") to provide strategic, proactive, comprehensive and consistent guidance and direction to the HHC, the DHHL staff, and its beneficiaries on water-related issues, actions, and decisions. The WPP was developed using existing legal authorities, previously approved policies and plans (e.g., General Plan 2002), and two years of extensive beneficiary input and consultation in compliance with the DHHL's Beneficiary Consultation Policy (2009). One of the four primary goals in the WPP is to "[a]ggressively, proactively, consistently and comprehensively advocate for the kuleana of the beneficiaries, the DHHL, and the HHC to water before all relevant agencies and entities." On August 17, 2015, the CWRM approved the HHC's water reservation request under Hawaii Revised Statutes ("HRS") section 174C-101(a) for the DHHL lands in the Keauhou Aquifer System Area ("KASA") on Hawai'i Island. The CWRM Staff Submittal for that action noted at page 5 that "[d]ue to the interest in the KASA petition to designate the area as a ground water management area, DHHL filed the petition for reservation request." This Staff Submittal is attached hereto as *Exhibit 2*. CWRM staff also noted that granting this reservation in the KASA would help the CWRM promote its approach to "managing the resource and protecting the public trust" through the collaboration and consistency framework provided by the Hawai'i Water Plan. In September 2015, the CWRM through its staff, initiated discussions among key parties to explore potentially mediating some issues raised by the Pō'ai Wai Ola Petition and Complaint. As part of those efforts, by letter dated September 24, 2015, the CWRM staff requested from the DHHL information on its existing uses as well as its "future water use projections and information to substantiate each demand." The CWRM staff explained that this information would "lay the foundation for a more productive mediation effort" on the Petition and Complaint. In response to that request, DHHL filed a Petition for Reservation of Surface Water dated November 17, 2015 ("2015 Petition"). Between February 2016 and April 2017, the DHHL participated in mediation discussions that culminated in the April 18, 2017 Mediation Agreement among Pō`ai Wai Ola / West Kaua`i Watershed Alliance, the State of Hawai`i Agribusiness Development Corporation, the Kekaha Agricultural Association, the Kaua'i Island Utility Cooperative ("KIUC"), the DHHL and ¹ On July 24, 2013, Earthjustice on behalf of its clients, Pō'ai Wai Ola and the West Kaua'i Watershed Alliance, filed a petition to amend the Interim Instream Flow Standard ("**IIFS**") for the Waimea River and its tributaries ("**Petition**"), as well as a Complaint And Petition For A Declaratory Order Against Waste ("**Complaint**"), related to the same waters. In the Matter of Pō'ai Wai Ola/West Kaua'i Watershed Alliance's Combined Petition to Amend the Interim Instream Flow Standards for Waimea River and its Headwaters and Tributaries, and Complaint and Petition for Declaratory Order Against Waste, *available at* http://earthjustice.org/sites/default/files/files/WaimeaRiverFlowPetition.pdf. At page 44, Pō'ai Wai Ola stated that it "supports a reasonable and pono (just) balance between parallel public trust uses for the Waimea-Kekaha Hawaiian home lands, and the protection and restoration of Waimea River system's instream uses." approved by the CWRM. The Mediation Agreement is attached hereto as *Exhibit 3*. Section 2(B) of the Mediation Agreement states: B. DHHL will, within thirty days (30) of the approval of this agreement, submit a modified petition to provide for a water reservation of 6.903 MGD from the Kokee Streams, and request that the Commission consider and act on the modified petition within sixty (60) days of its filing. DHHL maintains the right to file, at later dates, additional water reservations for the Waimea Watershed. Similarly, section A(4) of the Mediation Agreement states: 4. DHHL will, within thirty days (30) of the approval of this agreement, submit a modified petition to provide for a water reservation of 6.903 MGD from the Kokee Streams, and request that the Commission consider and act on the modified petition within sixty (60) days of its filing. DHHL maintains the right to file, at later dates, additional water reservations for the Waimea Watershed. The parties acknowledge DHHL's rights to water as set forth in the Hawaiian Homes Commission Act, the Hawaii Constitution, and Haw. Rev. Stat. chapter 174C, the State Water Code. Other parts of the Mediation Agreement collectively offer the Department an unprecedented opportunity to secure a partnership with the KIUC that if realized, will provide a reliable means to transmit water to its lands and will shift costs of rehabilitating, maintaining and improving key infrastructure from the Department to the KIUC. In the Mediation Agreement, DHHL also maintains the right to seek additional water reservations for full build out in the future. In light of these and other provisions of the Mediation Agreement, the DHHL submits this Modified Reservation Petition for 6.903 MGD pursuant to the legal authorities discussed below. #### II. LEGAL AUTHORITIES Congress passed the HHCA on July 9, 1921, thereby establishing a homesteading program for native Hawaiians. Section 4 of the Admission Act of 1959 adopted the HHCA, as amended, as a provision of the Hawaii State Constitution. Sections 5(b) and 5(f) of the Admission Act reaffirm the State's obligation to manage the Hawaiian home lands and fulfill the purposes of the HHCA, as part of a compact with the United States accepted as a condition for admission into the Union. Thus, as fiduciary, the State must fulfill the enumerated purposes of the HHCA, which includes "[p]roviding adequate amounts of water and supporting infrastructure, so that homestead lands will always be usable and accessible." HHCA § 101(b)(4). ² The Hawai'i State Constitution Article XII, sections 1 through 4 further define the State's responsibility to carry out and fulfill the purposes of the HHCA. Article XII, section 2 states: "The State and its people do further agree and declare that the spirit of the Hawaiian Homes Commission Act looking to **the continuance of the Hawaiian homes projects** for the further rehabilitation of the Hawaiian race **shall be faithfully carried out**." (Emphases added). There are numerous legal provisions that serve to carry out the State's broad mandate to provide "adequate amounts of water and supporting infrastructure" for Hawaiian home lands. One such provision is through water reservations to protect the Department's future water needs under the State Water Code (HRS chapter 174C). In particular, the Water Code directs the CWRM to incorporate and protect adequate reserves of water for Hawaiian home lands as set forth in section 221 of the HHCA.³ HRS § 174C-101(a). HRS section 174C-101(a) states, in relevant part: Provisions of this chapter shall not be construed to amend or modify rights or entitlements to water as provided for by the Hawaiian Homes Commission Act, 1920, as amended, and by chapters 167 and 168, relating to the Molokai irrigation system. **Decisions of the commission on water resource management** relating to the planning for, regulation, management, and conservation of water resources in the State **shall**, to the extent applicable and consistent with other legal requirements and authority, incorporate and protect adequate reserves of water for current and foreseeable development and use of Hawaiian home lands as set forth in section 221 of the Hawaiian Homes Commission Act. (Emphases added). In addition to the DHHL's legal rights to water that are enshrined in federal and state law, DHHL water uses are public trust uses, ⁴ a fundamental principle of Hawai'i water law more fully described in a series of significant Hawai'i Supreme Court decisions including In re Kukui (Moloka'i) Inc., 116 Hawai'i 481, 486, 174 P.3d 320, 325 (2007) ("Kukui"), and Kauai Springs, Inc. v. Planning Commission of County of Kauai, 133 Hawai'i 141, 173-75, 324 P.3d 951, 982-85 (2014) ("Kaua'i Springs"). Thus, the Hawai'i Constitution, the Water Code, the HHCA and case law recognize, affirm and protect the water rights of the Department and its beneficiaries. See In re Wai'ola o Moloka'i, 103 Hawai'i 401, 431, 83 P.3d 664, 694 (2004) (recognizing home land water entitlements as a public trust purpose), HRS §§ 174C-101(a), -49(a), - 49I, -31(q); HHCA §§ 101(b)(4), 220(d); see also HAR §§ 13-171-60 to -63. _ The clear intent of HHCA section 221 was that the Department should have a priority claim to water above any private users in accordance with the Act's mandate. See e.g., HHCA § 221(b) (stating that all water licenses issued shall be subject to the condition that the DHHL is entitled to use, without charge, any water that DHHL deems necessary in order to "adequately to supply the livestock, aquaculture operations, agriculture operations, or domestic needs of individuals upon any tract"); HHCA § 221(c) (stating that the Department may use, without charge water not covered by a water license, or covered by a water license issued after
passage of the HHCA in order "adequately to supply the livestock, aquaculture operations, agriculture operations, or domestic needs of individuals upon any tract,"); HHCA § 221(d) (stating that the Department has specific rights to water, without charge, from tributaries to the Waimea River, regardless of whether it is licensed for the *additional* purpose of adequately irrigating any tract). ⁴ Other public trust purposes include (1) water resource protection, (2) domestic water use, and (3) the exercise of Native Hawaiian and traditional and customary rights. Public trust uses do not include private commercial uses. Kukui, 116 Hawai'i at 791 n.6, 174 P.3d at 330 n.6; Maiāhole) 94 Hawai'i 97, 136-37, 9 P.3d 409, 448-49 (2000) ("Waiāhole"). Moreover, the Hawai'i Supreme Court has consistently held that as a public trust use of water, the DHHL's uses and reservations are not subject to the heightened standard applied to "private commercial uses." To illustrate, the Hawai'i Supreme Court noted in Waiāhole: Thus, insofar as the public trust, by nature and definition, establishes use consistent with trust purposes as the norm or "default" condition, we affirm the Commission's conclusion that it effectively prescribes a "higher level of scrutiny" for private commercial uses such as those proposed in this case. In practical terms, this means that the burden ultimately lies with those seeking or approving such uses to justify them in light of the purposes protected by the trust. <u>Waiāhole</u>, 94 Hawai'i at 142, 9 P.3d at 454; <u>see also Kaua'i Springs</u>, 133 Hawai'i at 173, 324 P.3d at 983 ("In accordance with the fundamental principles of the public trust and the fact that private commercial use is not one of the uses the public trust protects, a "higher level of scrutiny" is therefore employed when considering proposals for private commercial use."). Here, the water uses advocated by Pō'ai Wai Ola and the DHHL are public trust uses and purposes whereas the remaining water uses are private commercial uses of water subject to the "higher level of scrutiny" standard, including the evaluation of their reasonable-beneficial nature. In summary, the Department's priority claim to water and the review standards are clearly set forth in the aforementioned authorities, which serve to accomplish the State's broad mandate to provide adequate water and infrastructure to homestead lands so that they are usable and accessible. The methodological process by which the HHC and the DHHL has determined their future water needs is described next. #### III. GENERAL METHODOLOGY FOR CALCULATING WATER DEMANDS The Department owns 15,061 acres of land at Waimea, Kaua'i (hereinafter, referred to as the "Waimea lands"). These lands, which are part of the original lands set aside by Congress in 1921 for this trust in the HHCA, comprise of 73 percent of the Department's land holdings on Kaua'i. As described in detail below, the HHC has determined through its established land planning and designation process that these lands shall be used for homesteading and related beneficiary uses. Thus, the purpose of this Modified Reservation Petition is to reserve water for the Department's current and near-term development of these lands. #### A. DHHL Planning System and Planned Land Uses The Department has developed a three-tiered planning system to guide development and management of its land holdings for the benefit of current and future beneficiaries. The planning system includes its over-arching General Plan, followed by its second tier of Strategic Program Plans and Island Plans (which includes the Kaua'i Island Plan ("KIP") and the WPP), followed again by Regional and Development Plans in its third tier. #### 1. DHHL General Plan (2002) The General Plan (GP), approved by the HHC in February 2002, is the first tier of the Department's planning system.⁵ It is a statewide plan with a long-term perspective that establishes seven categories of goals and objectives to meet the Department's mission. The seven categories are: Land Use Planning; Residential Uses; Agricultural and Pastoral Uses; Water Resource; Land Resource Management; Economic Development; and Building Healthy Communities. The General Plan also establishes ten land use designations that may be applied to land (akin to state and county land use designation and zoning). There are four homesteading designations: Residential, Subsistence Agriculture, Supplemental Agriculture and Pastoral. The remaining six non-homesteading designations are: General Agriculture, Special District, Community Use, Conservation, Commercial and Industrial. These land designations, similar to county zoning, are a valid basis for determining water demands. See Exhibit 2. #### 2. Water Policy Plan (2014) This Modified Reservation Petition is consistent with the vision, mission, values and policies of the WPP and specifically furthers Goal 2 of the WPP to "[a]ggressively, proactively, consistently, and comprehensively advocate for the kuleana of the beneficiaries, the DHHL, and the HHC to water before all relevant agencies and entities." It is also consistent with the WPP policy to "[d]evelop, manage, and steward water in a manner that balances cost, efficiency measures, and Public Trust uses in the short and long term." #### 3. DHHL Energy Policy (2009) This Modified Reservation Petition is also consistent with the five objectives of the DHHL Ho`omaluō Energy Policy⁸ and specifically furthers Objective 2, which is "Ko`o: Facilitate the use of diverse renewable energy resources" as well as the second listed activity for that Objective, which is to Pursue the leasing of those lands that are identified as suitable for renewable energy projects. (First priority should be given to entities that would provide "firm" renewable energy power such as ⁵ The DHHL General Plan can viewed online at http://dhhl.hawaii.gov/wpcontent/uploads/2012/05/Island Plan General 2002.pdf. ⁶ These non-homesteading land use designations allow for land to be utilized for generation of revenue to support the DHHL. ⁷ The DHHL Water Policy Plan can be viewed online at http://dhhl.hawaii.gov/wp-content/uploads/2013/09/HHC-Water-Policy-Plan-140722.pdf. ⁸ The DHHL Ho'omaluō Energy Policy can be viewed online at http://dhhl.hawaii.gov/wp-content/uploads/2011/05/DHHL-Energy-Policy.pdf. garbage-to-energy (mass-burn), geothermal, pump-storage hydropower, solar-thermal and second priority to "as-available" renewable energy power such as wind, solar-photovoltaic, and wave.) #### 4. Kaua'i Island Plan (2004) Island Plans are the second tier of the DHHL planning system and have a longer-term perspective (around twenty years with an update at ten years); they also establish land use goals and objectives based on the GP, apply land use designations to meet the needs of the Department, and ensure proper stewardship of the 'āina. These plans are developed through a process focused on identifying the needs and opportunities of the DHHL beneficiaries by surveys, focus groups, open houses, community consultations, workshops with the HHC, and other community based planning tools. They are also "living documents" in the sense that they remain applicable if funding or other constraints prevent their implementation within stated timeframes, until such time a superseding Island Plan is approved. The KIP was approved in 2004 and provides recommendations for future uses of the Department's land holdings on Kaua'i to meet the needs of the Department and its beneficiaries, with particular focus on the next twenty years. For Kaua'i in particular, the relevant planning objectives include the following: - Deliver at least 840 Residential homesteads, or an average of 42 homesteads per year; - Provide agriculture and pastoral homestead lots for subsistence and supplemental purposes; - Provide general lease agriculture and pastoral lots of adequate size for commercial farming or ranching business purposes by native Hawaiians. - Identify and establish a clear understanding of existing water resources available to the Hawaiian Home Trust; - Preserve and protect significant natural, historic and community resources on Trust lands; - Allow native Hawaiian use of natural resources on Trust lands for traditional and customary purposes; ⁹ The Kaua'i Island Plan can be viewed online at http://dhhl.hawaii.gov/wp-content/uploads/2012/05/Island Plan Kauai 2004.pdf. Following land analysis and intensive community engagement by beneficiaries, the HHC assigned its Waimea lands the following land use designations in the KIP:¹⁰ | Land Use Designation | Acreage | |-------------------------|---------| | Residential Homestead | 202 | | Subsistence Agriculture | 214 | | General Agriculture | 12,527 | | Pastoral Homestead | 475 | | Special District | 1,258 | | Community Use | 42 | | Conservation | 343 | | TOTAL | 15,061 | The Department further refined each land use designation into specific uses that are set forth in the KIP and explained below: #### General Agriculture Lands Available for General Leasing (2,617 acres) The Department plans to use these lands for agriculture and tropical forestry. Based on proposals for use of the 12,527 acres of General Agriculture lands, the Department determined that 3,326 acres are arable and can be utilized for crop production – generally the ridge tops dissected by valleys and served by roads, including formerly cultivated cane lands. Of these 3,326 acres, 709 acres are accounted for in the Pu'u 'Ōpae Makai projected use (explained below), and thus,
the total acreage of this category is 2,617 acres. At this time, there are no current proposals for the use of these General Agricultural lands other than the 709 acres that are accounted for in the Pu'u 'Ōpae Makai projected use. #### Subsistence Agriculture/Residential/Community Use - Mauka Village (458 acres) The Department plans the Mauka Village as the center of residential and subsistence agricultural homesteading activities. It will feature 50 subsistence agricultural lots at three acres each (on 214 acres) and 141 residential lots at one acre each (on 202 acres). The Department also plans that 42 acres be set aside for not-yet-specified community uses by the Mauka Village. Thus, the total acreage of the planned Mauka Village (residential and subsistence agriculture homesteads) is 458 acres and is reflected in the Department's Near-Term Water Demand in section III(B). ¹⁰ KIP page 3-3. These land use designations are based on several factors such as environmental, natural resource, and cultural attributes, physical characteristics, infrastructure improvements, adjacent existing and planned uses as well as intensive community engagement by beneficiaries. As noted in the attached Item G-2 at page 2, these land use designations are broad categories that can encompass multiple kinds of uses, as is appropriate for a statewide land use classification scheme. #### Special District - Pu`u `Ōpae Mauka (523 acres) The Department envisions the 523 acres of Pu'u 'Ōpae Mauka as a cultural pu'uhonua (a place of refuge) where Hawaiians and others may reconnect with land and water resources and learn and share farming and pastoral skills to ensure self-sufficiency. Planned uses for this area include agriculture, aquaculture, pastoral, and community uses, and includes 15 acres for kalo cultivation (of which 10 acres would be in cultivation at any given time). These uses are reflected in the Department's Near-Term Water Demand in section III(B). #### Special District - Wai'awa Valley Arable (178 acres) The Department designated 735 acres in this valley as a Special District to preserve cultural resources as well as create opportunities for kalo cultivation at the valley floor. Of these 735 acres, 178 acres sit below the 200-foot contour line and are suitable for kalo cultivation (of which 120 acres would be in cultivation at any given time). Currently, portions of the 178 acres of arable land in Wai'awa Valley are cultivated on a month-to-month revocable permit. The Department's month-to-month lessee utilizes water after it flows through the Wai'awa power plant. Section F(9) of the Mediation Agreement states that the Wai'awa power plant will be allowed to operate in its current manner for no more than three years from the approval of the agreement after which it must be either decommissioned or repowered to operate using such waters as are reasonably related to agricultural (as opposed to energy) uses. The Department's future water reservation will account for future and existing water needs in Wai'awa. #### Future Use Homestead - Pu`u `Ōpae Makai (709 acres) The 709 acres of Pu'u 'Ōpae Makai comprise areas of gentler slopes, which were previously used for sugarcane cultivation. Currently, some portions of these lands are used for diversified agriculture on a month-to-month revocable permit. The Department's beneficiaries desire access to these lands for farming and ranching. Beneficiary planning for the use of these lands is discussed more in section III(A)(5), below. Uses for this area are reflected in the Department's Near-Term Water Demand in section III(B). #### Pastoral - Pu'u 'Opae Pastoral (475 acres) The Pu`u `Ōpae Pastoral lands encompass five existing pastoral lots totaling 475 acres. Stock and pastoral irrigation water for the existing lessee is provided via the Pu`u Moe diversion stemming from the Kōke`e Ditch. An allocation of water for these lands is reflected in the Department's Near-Term Water Demand in section III(B). #### No Foreseeable Water Demand (10,079 acres) The Department concluded that 10,079 acres of land have no foreseeable water demand for various reasons including topography and access/infrastructure challenges. Lands may be used for conservation purposes including reforestation with native vegetation and hunting. Therefore, the Department is not seeking water for these lands. #### 5. West Kaua`i Regional Plan (2011) & Draft Beneficiary Plan (2014) Regional Plans, the third tier of the Department's land use planning, are developed through a series of meetings with beneficiaries and stakeholders to identify issues and opportunities that affect a particular region. Regional Plans generally have a short-term focus of two to four years, however, as with the Island Plans, they are also "living documents" in the sense that they remain applicable if funding or other constraints prevent their implementation within stated timeframes, until such time a superseding Regional Plan is approved. The Department developed the West Kaua'i Regional Plan following an extensive regional planning process with its Waimea, Kekaha, and Hanapēpē beneficiaries. The HHC approved this plan in November 2011. Throughout the regional plan process, beneficiaries expressed their desire to utilize lands for agricultural homestead purposes. As a result of this process, the Department identified several priority projects for the West Kaua'i region, including the development of an agricultural and water plan and the development of renewable energy projects compatible with agriculture. A major milestone in the effort to develop an agricultural and water plan has been met in the form of the submission by the Kekaha Hawaiian Homestead Association of a working draft Project Master Plan for the Pu`u `Ōpae Farm and Irrigation Project. On April 17, 2017, the HHC issued a license to the Kekaha Hawaiian Homestead Association for 231 acres at Pu`u `Ōpae for the purpose of management and maintenance of the Pu`u `Ōpae Farm and Irrigation Project. ¹¹ The West Kaua'i Regional Plan can be viewed online at http://dhhl.hawaii.gov/wp-content/uploads/2011/05/DHHL West Kauai Regional Plan 030111 small.pdf. #### B. Near-Term Water Demand Based on the forgoing, the Department's requests that CWRM reserve 6.903 MGD of water for the land uses set forth above. 12 This request is summarized in the table below. | Specific Land Use | Description | Units | Duty | Basis for Duty | Demand
(MGD) | |------------------------|-----------------------------------|--|--------------------|---|-----------------| | Mauka Village | Residential | 141 dwelling
units | 500 GPU per
day | Kaua'i County Water System Standards | 0.07 | | | Agriculture (ag subsistence lots) | 150 acres | 3,400 GAD | Hawai'i DOA Agricultural Water Use
and Development Plan ("AWUDP") | 0.51 | | | | 50 dwelling
units | 500 GPU per
day | Kaua'i County Water System Standards | 0.025 | | | Community Use | 42 acres | 4000 GAD | "Table 3.4: SWPP Potable Water Demand Unit Rates by Land Use Designation" October 2014 <u>Draft</u> Report, State Water Projects Plan <u>Update – DHHL</u> , Fukunaga & Associates for the Department of Land and Natural Resources | 0.168 | | Pu`u `Ōpae
Mauka | Agriculture | 508 acres | 3,400 GAD | AWUDP | 1.72 | | | Kalo Cultivation | 15 acres
total, max
10 acres in
cultivation at
any given
time | 150,000 GPD | Gingerich, S.B., Yeung, C.W., Ibarra, T.N., and Engott, J.A., 2007, Water use in wetland kalo cultivation in Hawai'i: U.S. Geological Survey Open-File Report 2007-1157, 68 p. [http://pubs.usgs.gov/of/2007/1157/] | 1.5 | | Pu`u `Õpae
Makai | Agriculture | 709 acres | 3,400 GAD | AWUDP | 2.41 | | Pu`u `Ōpae
Pastoral | Pastoral | 475 acres | | See explanation below | 0.5 | | Total | | | | | 6.903 | As explained below, the Department's fundamental water needs for homesteading and beneficiary agricultural uses are based on conservative, reasonable, and fact-based estimates. To the extent possible, the demand standards and their application, including the level of planning detail and justification, are identical to those utilized in other CWRM-approved planning documents (e.g., the various county Water Use and Development Plans). Where the CWRM has not adopted applicable standards (e.g., the watering needs of livestock), the Department sought the best available information for the standards it applied and furnishes this authority to the CWRM as part of its Modified Reservation Petition. The Department relied upon and utilized County Standards for residential and the domestic demands of subsistence homesteads, an accepted standard for County Water Use and Development Plans. Specifically, the Kaua'i County Water System domestic consumption ¹² The Department specifically maintains the right to file a request for water for its remaining General Agricultural and Wai'awa lands at a later date. guideline for residential use is 500 gallons per unit ("GPU") per day. Thus, the Department requires 0.095 MGD for the domestic needs of the 191 dwelling units planned in the Mauka Village. The 2004 HDOA Agricultural Water Use and Development Plan ("AWUDP") standard of 3,400 gallons per acre per day ("GAD") is accepted as the best available estimate for diversified crop farming in Hawai'i. Notably, the CWRM commonly accepts this methodology in its planning as the AWUDP has been incorporated into the CWRM's Hawai'i Water Plan. Relying upon this duty, the Department calculated that it requires 0.51 MGD for its 150 acres of subsistence agriculture lots planned for the Mauka Village, 1.72 MGD
for its 508 acres of general agriculture in Pu'u 'Ōpae Mauka, and 2.41 MGD for general agriculture for its 709 acres in Pu'u 'Ōpae Makai. ¹³ Where AWUDP or County Standards are not applicable (e.g., the AWUDP does not have a planning estimate for pastoral uses, although livestock watering is necessary even in rain-fed pasture), the Department relied upon and utilized other acceptable standards. Moreover, the Department intentionally utilized the conservative range of estimates whenever possible, which is consistent with the Department's policy to emphasize conservation measures in its development and use of water. See HHC Water Policy Plan, Policy 3 ("Develop, manage, and steward water in a manner that balances cost, efficiency measures, and Public Trust uses in the short and long term."). The Department's modified water reservation amount reflected in the Mediation Agreement for 6.903 MGD reflects an allocation of 0.5 MGD to its Pu'u 'Ōpae Pastoral lands. The water needs for these 475 acres have been the subject of separate litigation and long contention. Similarly, the water demand for diversified agriculture is not applicable to kalo grown in lo'i (flooded fields). A duty of 150,000 GPD for the areas planned for kalo cultivation is based on the U.S. Geological Survey's 2007 study entitled Water Use in Wetland Kalo Cultivation in Hawai'i, which studied kalo water demands state-wide ("USGS Kalo Study"). The USGS Kalo Study is attached hereto as *Exhibit 4*. According to the study, the average inflow value for the 19 lo'i complexes studied was 260,000 GAD, and the median inflow value was 150,000 GAD. The Department relied upon the lower duty of 150,000 GAD to calculate that it required ¹³ The Department considers this base of 3,400 GAD to be a conservative estimate for its agricultural uses on Waimea's dry, exposed leeward slopes and understands that actual water demand will depend on the crops planted, rainfall month-to-month and year-to-year, and other factors. ¹⁴ The USGS Kalo Study is also available online at http://pubs.usgs.gov/of/2007/1157/. ¹⁵ Using the median value of all complexes in Hawai'i is a conservative estimate of flow through needs, and is consistent with the low end of historic estimates of lo'i flow through needs. In other studies reviewed by the USGS, consumptive use of water in kalo cultivation has historically estimated to range from 20,000 to 80,000 GAD. 1.5 MGD for its 15 acres planned for kalo cultivation in Pu'u 'Ōpae Mauka (of which 10 acres would be cultivated at any given time). #### IV. <u>CONCLUSION</u> In 1991 when passing Act 325 (which was later codified in part as HRS section 174C-101(a)), the Hawai'i Legislature sought to remedy what it recognized as historical challenges the Department has faced to access water and in turn, its significant effect on the Department's ability to provide beneficiaries with useable and accessible homestead lands: Since the passage of the Hawaiian Homes Commission Act of 1921, the shortage of available water has been one of the primary reasons for the failure of administrators to settle Native Hawaiians on Hawaiian homesteads ... [This] inability to access water resources in an economic and efficient manner has been a major obstacle to the settlement of large tracts of homestead land. In many cases, competing water users have been able to assert claims to water long before the Department has been able to. In some instances, the failure of different state agencies to coordinate their activities has led to the commitment of government sources of water to private interests without regard for the water needs of current and future homesteaders. This problem has been exacerbated by the potentially long delays in providing supporting infrastructure to Hawaiian homestead areas. During these periods of delay, other water users are seeking to commit water resources for other competing uses. This threat still exists today.... Accordingly, the legislature finds that further amendments to laws affecting the allocation of water must be enacted to assure that adequate amounts of water are reserved for the future use of Hawaiian homesteaders. 16 Here, in order to implement its homesteading objectives in this area, the Department must secure adequate surface water for its planned uses as well as capital investments for existing inadequate or proposed infrastructure development. Additionally, operating funds will be required to cover system repairs, improvements, and maintenance. The Mediation Agreement describes potential partnership(s) with non-consumptive water uses that are compatible with agricultural homesteading (i.e., hydroelectric generating facilities, including pumped storage and/or solar renewable energy projects) that will assist with financing the infrastructure (e.g., access, roads, water systems) and operations required to implement the Department's planned agricultural uses as envisioned in the KIP. The ability of the Department to secure such a partnership or to meaningfully implement its plans for its Waimea Lands depends, in large part, on the outcome of this Modified Reservation Petition. ¹⁶ Act 325, 16th Leg., 1991 Reg. Sess., 1991 Haw. Sess. Laws 1013). ¹⁷ In particular, because the Department's bonding capacity is at its ceiling, the Department is limited in its ability to invest in large infrastructure projects without assistance from Legislative CIP or partnerships. The Department has put forth a conservative estimate of its near-term water needs, rooted in and consistent with legal authorities, HHC policy and plans, and beneficiary consultation. Therefore, the Department humbly requests that the CWRM consider and grant this petition in light of its duties to the beneficiaries of the HHCA as enshrined in the HHCA, State Constitution, and Water Code. /s/ Chairman Masagatani Enc.